...
首页> 外文期刊>Chemical engineering journal >Preparation, characterization and evaluation of fluoride adsorption efficiency from water of iron-aluminium oxide-graphene oxide composite material
【24h】

Preparation, characterization and evaluation of fluoride adsorption efficiency from water of iron-aluminium oxide-graphene oxide composite material

机译:铁铝氧化物-氧化石墨烯复合材料在水中的氟吸附效率的制备,表征与评价

获取原文
获取原文并翻译 | 示例
           

摘要

Graphene oxide (GO)-incorporated iron-aluminium mixed oxide (HIAGO) composite, a nobel material was prepared and characterized by FTIR, XRD, TGA/DTA, SEM, TEM, and Raman spectroscopy, which had been employed for adsorption of the fluoride from aqueous solutions. When this material was examined for fluoride scavenging ability from water, it had been established that the as-prepared HIAGO obtained by incorporating 3.0 g GO per 0.2 fraction of one gram formula amount of the mixed oxide matrix showed highest fluoride adsorption capacity (q(e), mg g(-1)) at pH similar to 7.0 and ambient temperature. The material showed an increase of q(e) with pH up to similar to 5.5, and then reduced. Kinetically, fluoride adsorption took place obeying the pseudo-second order model. The Langmuir adsorption isotherm described the equilibrium data best with monolayer adsorption capacities 22.13, 22.90 and 27.75 mg g(-1) at 288, 308 and 318 K, respectively, indicating endothermic nature of adsorption process, which was also confirmed from the thermodynamic analysis of equilibrium data. Fluoride adsorption efficiency of HIAGO had been predicted by modelling a single stage batch adsorber design parameters. (C) 2016 Elsevier B.V. All rights reserved.
机译:制备了掺有氧化石墨烯(GO)的铁铝混合氧化物(HIAGO)复合材料,并通过FTIR,XRD,TGA / DTA,SEM,TEM和拉曼光谱对诺贝尔材料进行了表征,这些材料已用于吸附氟化物从水溶液。当检查这种材料从水中的除氟能力时,已经确定,通过每0.2克配方量的混合氧化物基体0.2份掺入3.0克GO所制得的HIAGO具有最高的氟吸附能力(q(e ),mg g(-1))在接近7.0的pH和环境温度下。该材料显示出随着pH值升高至5.5,q(e)增大,然后减小。从动力学上讲,遵循伪二级模型发生了氟化物吸附。 Langmuir吸附等温线描述了最佳平衡数据,单层吸附容量分别为288、308和318 K时的单层吸附容量分别为22.13、22.90和27.75 mg g(-1),表明吸附过程的吸热性质,这也从对Cd的热力学分析中得到证实。平衡数据。 HIAGO的氟化物吸附效率已通过模拟单级间歇式吸附器设计参数进行预测。 (C)2016 Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号