首页> 外文期刊>Frontiers in Microbiology >Commentary: Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and its Impact on Avian Pathogenic Escherichia coli (APEC) Classification
【24h】

Commentary: Comparative Analysis of Phylogenetic Assignment of Human and Avian ExPEC and Fecal Commensal Escherichia coli Using the (Previous and Revised) Clermont Phylogenetic Typing Methods and its Impact on Avian Pathogenic Escherichia coli (APEC) Classification

机译:评论:使用(先前和经修订的)Clermont系统发生分型方法对人和禽ExPEC与粪便大肠杆菌(斜体)的系统发生分配进行比较分析及其对禽致病性大肠杆菌的影响。 (APEC)分类

获取原文
       

摘要

Escherichia coli ( E. coli ) is mostly a commensal bacterium, part of the intestinal microbiota of a variety of animals, including humans (Bélanger et al., 2011 ; Vila et al., 2016 ). However, some E. coli strains can be pathogenic and depending on the spectrum of encoded virulence factors E. coli can cause either intestinal or extraintestinal infections (Kaper et al., 2004 ). It is known that the species E. coli has an extensive genetic substructure (Chaudhuri and Henderson, 2012 ) and that the substructure of E. coli populations differs among distinct geographical regions (Freitag et al., 2005 ; Walk et al., 2009 ) and bacterial hosts (Vadnov et al., 2017 ).Initially, four different phylogenetic groups of E. coli were defined, A, B1, B2, and D (Chaudhuri and Henderson, 2012 ). Clermont et al. ( 2000 ) established a PCR-method, the so called triplex PCR, for assigning E. coli strains into these four phylogenetic groups, a method that was widely used to type and subtype commensal and pathogenic E. coli . Phylogenetic classification has been extensively used to compare with serogroup, virulence and resistance traits as well as distribution among various hosts. However, subsequently, on the basis of multi-locus sequence typing and complete genome data, additional E. coli phylogenetic groups were recognized (Walk et al., 2009 ; Luo et al., 2011 ). The number of defined phylogenetic groups thus rose to 8 (A, B1, B2, C, D, E, F that belong to E. coli sensu stricto , and the eighth—the Escherichia cryptic clade I). Thus, Clermont et al. ( 2013 ) proposed a revised, so called extended quadruplex method for assigning E. coli strains to phylogenetic groups that is now replacing the triplex method. The authors validated the extended quadruplex method on a set of 234 strains, which included the ECOR strains (Clermont et al., 2011 ) and 133 strains from Australia (Gordon et al., 2008 ). In addition, Clermont et al. ( 2013 ) used the new extended quadruplex method for phylogroup assignment of 293 human fecal E. coli strains from France and 373 human fecal E. coli strains from Australia (Clermont et al., 2013 ). The authors reported that 12.8% of the tested strains belonged to the new phylogroups C, E, F, and clade I and that strains previously assigned, with the triplex method, to the A and D group should be retested with the new extended quadruplex method. None of the investigated strains were not typeable (NT). Recently, Logue et al. ( 2017 ) performed a comparative analysis of phylogenetic assignment of human and avian extraintestinal pathogenic (ExPEC) and fecal commensal E. coli (FEC) strains and showed that in total 13.05% of studied human E. coli strains and 40.49% of avian E. coli strains had to be reclassified. The majority of reassignments among the human E. coli strains involved changes from phylogroup D to F (45 out of 139 reclassifications), A to C (29 out of 139 reclassifications) and D to B2 (26 out of 139 reclassifications), while among the avian E. coli strains, the majority were reclassified from phylogroup A to C (162 out of 377 reclassifications), D to F (139 out of 377 reclassifications), and D to E (26 out of 377 reclassifications) (Logue et al., 2017 ). Here, we compared phylogroup classification of our strain collections: E. coli from skin and soft tissue infections (Petkov?ek et al., 2009 ), fecal E. coli strains from healthy humans (Star?i? Erjavec et al., 2010 ), and avian fecal strains (Salmi? and Stele, 2012 ), with both PCR methods and with the results presented in Logue et al. ( 2017 ) (Table 1 ). Compared to the latter study (Logue et al., 2017 ), among our strain collections, more human (27.60% of human) and less avian (23.33% of avian) strains had to be reclassified. Further, among our human strains, the majority involved reclassification from the D to E phylogroup (19 out of 53 reclassifications), and D to F (9 out of 53 reclassifications). On the other hand, only 4 out of 53 involved reclassification from A to C as well as from B1 to E, with the latter not reported by Logue et al. ( 2017 ). Further, among our avian fecal strains, the majority of reclassifications were from the D to NT (7 out of 21 reclassifications), D to E (5 out of 21 reclassifications) and A to NT (3 out of 21 reclassifications). Our results thus showed that among distinct E. coli populations, reclassifications to different groups occurred with different prevalences. This is also evident from our data obtained on our collection of 86 fecal E. coli strains from brown bears (Vadnov et al., 2017 ), where the most prevalent reclassification was from group D to Clade III/IV/V with 25 out of 61 reclassifications, followed by reclassification from D to E (10 out of 61 reclassifications) (Table 1 ). Further, the high number of reclassifications to NT observed among our avian fecal strains is striking, especially as Logue et al. ( 2017 ) reported only a small number for reclassifications to the NT, in total from A to NT on
机译:大肠杆菌(E. coli)主要是一种共生细菌,是包括人在内的多种动物肠道菌群的一部分(Bélanger等,2011; Vila等,2016)。但是,某些大肠杆菌菌株可能具有致病性,并且取决于编码的毒力因子的谱,大肠杆菌可能引起肠道或肠道外感染(Kaper等人,2004年)。众所周知,大肠杆菌物种具有广泛的遗传亚结构(Chaudhuri和Henderson,2012),并且大肠杆菌种群的亚结构在不同的地理区域之间也有所不同(Freitag等,2005; Walk等,2009)。以及细菌宿主(Vadnov et al。,2017)。最初,定义了四个不同的大肠杆菌系统发生群,即A,B1,B2和D(Chaudhuri和Henderson,2012年)。 Clermont等。 (2000年)建立了一种PCR方法,即所谓的三重PCR,用于将大肠杆菌菌株分配到这四个系统发育组中,该方法被广泛用于划分共性和致病性大肠杆菌。系统发育分类已被广泛用于与血清群,毒力和抵抗力特征以及在各种宿主之间的分布进行比较。然而,随后,基于多基因座序列分型和完整的基因组数据,识别了另外的大肠杆菌系统发生群(Walk等,2009; Luo等,2011)。因此,确定的系统发生群的数量上升到8个(属于严格意义上的大肠杆菌的A,B1,B2,C,D,E,F,而第八个是大肠埃希氏菌隐性进化枝I)。因此,克莱蒙等。 (2013年)提出了一种修订的,所谓的扩展四重体方法,用于将大肠杆菌菌株分配到系统发生组,现在正在替代三重方法。作者在一套234株菌株中验证了扩展四重体法,其中包括ECOR株(Clermont等,2011)和来自澳大利亚的133株(Gordon等,2008)。此外,克莱蒙等。 (2013年)使用新的扩展四重体方法对法国的293人粪便大肠杆菌菌株和澳大利亚的373人粪便大肠杆菌菌株进行了菌群分配(Clermont等,2013)。作者报告说,测试的菌株中有12.8%属于新的系统群C,E,F和进化枝I,以前用三重方法分配给A和D组的菌株应使用新的扩展四重体方法进行重新测试。 。所研究的菌株都不是不能分型的(NT)。最近,Logue等。 (2017)对人和禽肠外致病菌(ExPEC)和粪便共生大肠杆菌(FEC)菌株的系统发育分配进行了比较分析,结果表明,总共研究的人大肠杆菌菌株为13.05%,禽大肠杆菌为40.49%。大肠杆菌菌株必须重新分类。在人类大肠杆菌菌株中,大多数重新分配涉及从种系D到F(139个重分类中的45个),A到C(139个重分类中的29个)和D至B2(139个重分类中的26个)的变化。禽大肠杆菌菌株,大多数从phylogroup重分类为C(377个重分类中的162个),D从F组(377个重分类中的139个)和D至E(377个重分类中的26个)(Logue等) 。,2017)。在这里,我们比较了菌株集合的菌群分类:来自皮肤和软组织感染的大肠杆菌(Petkov?ek等,2009),来自健康人类的粪便大肠杆菌菌株(Star?i?Erjavec等,2010)。 )和禽粪便菌株(Salmi?和Stele,2012),采用PCR方法并在Logue等人的论文中提供了结果。 (2017)(表1)。与后者的研究相比(Logue et al。,2017),在我们的菌株集合中,必须对更多的人类菌株(占人类的27.60%)和更少的禽类(占禽类的23.33%)进行重新分类。此外,在我们的人类品系中,大多数涉及从D到E phylogroup的重分类(53个重分类中的19个)和D到F(53个重分类中的9个)。另一方面,在53个样本中,只有4个涉及从A到C以及从B1到E的重新分类,而Logue等人未报道后者。 (2017年)。此外,在我们的禽粪便菌株中,大多数重分类是从D到NT(21个重分类中的7个),D到E(21个重分类中的5个)和A到NT(21个重分类中的3个)。因此,我们的结果表明,在不同的大肠杆菌种群中,以不同的患病率重新分类为不同的群体。从我们收集的来自棕熊的86株粪便大肠杆菌菌株获得的数据中也可以明显看出这一点(Vadnov et al。,2017),其中最普遍的重分类是从D组到Clade III / IV / V,其中25种来自重新分类61次,然后从D重新分类为E(61次重新分类中的10次)(表1)。此外,在我们的禽粪便菌株中观察到的NT重分类的数量惊人,尤其是Logue等。 (2017年)报道的只有少量的重新分类到NT,总共从A到NT。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号