【24h】

Positivity and Boundedness of Solutions for a Stochastic Seasonal Epidemiological Model for Respiratory Syncytial Virus (RSV)

机译:呼吸道合胞病毒(RSV)的随机季节性流行病学模型的解的正性和有界性

获取原文

摘要

In this paper we investigate the positivity and boundedness of the solution of a stochastic seasonal epidemic model for the respiratory syncytialvirus (RSV ). The stochasticity in the model is due to fluctuating physical and social environments and is introduced by perturbing the transmission parameter of the seasonal disease. We show the existence and uniqueness of the positive solution of the stochastic seasonal epidemic model which is required in the modeling of populations since all populations must be positive from a biological point of view. In addition, the positivity and boundedness of solutions is important to other nonlinear models that arise in sciences and engineering. Numerical simulations of the stochastic model are performed using the Milstein numerical scheme and are included to support our analytic results.
机译:在本文中,我们研究了呼吸道合胞病毒(RSV)的随机季节性流行病模型的解的阳性和有界性。该模型的随机性是由于物理和社会环境的波动而引起的,并且是通过扰动季节性疾病的传播参数引入的。我们展示了随机季节性流行病模型的正解的存在性和唯一性,这在人口建模中是必需的,因为从生物学的角度来看所有人口都必须是正的。此外,解的正性和有界性对科学和工程学中出现的其他非线性模型也很重要。随机模型的数值模拟是使用Milstein数值方案进行的,并包括在内以支持我们的分析结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

联系方式:18141920177 (微信同号)

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号