首页> 外文期刊>American journal of engineering and applied sciences >Hybrid Ceramo-Polymeric Nanocomposite for Biomimetic Scaffolds Design and Preparation | Science Publications
【24h】

Hybrid Ceramo-Polymeric Nanocomposite for Biomimetic Scaffolds Design and Preparation | Science Publications

机译:用于仿生支架的杂化陶瓷-聚合物纳米复合材料的设计与制备科学出版物

获取原文
       

摘要

> >Biomimetics, biomechanics and tissue engineering are three multidisciplinary fields that have been contemplated in this research to attain the objective of improving prosthetic implants reliability. Since testing and mathematical methods are closely interlaced, a promising approach seemed to be the combination of in vitro and in vivo experiments with computer simulations (in silico). An innovative biomimetics and biomechanics approach and new synthetic structure providing a microenvironment, which is mechanically coherent and nutrient conducive for tissue osteoblast cell cultures used in regenerative medicine, are presented. The novel hybrid ceramo-polymeric nanocomposites are mutually investigated by Finite Element Analysis (FEA) biomimetic modelling, anatomic reconstruction, quantitative-computed-tomography characterization, computer design of tissue scaffold. The starting base materials are a class of innovative highly bioactive hybrid ceramo-polymeric materials set-up by the proponent research group that will be used as bioactive matrix for the preparation of in situ bio-mineralised tecto-structured porous nanocomposites. This study treats biomimetics, biomechanics and tissue engineering as strongly correlated multidisciplinary fields combined to design bone tissue scaffolds. The growth, maintenance and ossification of bone are fundamental and are regulated by the mechanical cues that are imposed by physical activities: This biomimetical/biomechanical approach will be pursued in designing the experimental procedures for in vitro scaffold mineralization and ossification. Bio-tissue mathematical modelling serves as a central repository to interface design, simulation and tissue fabrication. Finite element computer analyses will be used to study the role of local tissue mechanics on endochondral ossification patterns, skeletal morphology and mandible thickness distributions using single and multi-phase continuum material representations of clinical cases of patients implanted with the traditional protocols. New protocols will be hypothesises for the use of the new biologically tecto-structured hybrid materials.
机译: > >仿生,生物力学和组织工程是本研究中考虑的三个多学科领域,以达到提高假体植入物可靠性的目的。由于测试和数学方法紧密联系在一起,因此一种有前途的方法似乎是体外和体内实验与计算机模拟(计算机模拟 >)。提出了一种创新的仿生和生物力学方法,以及提供了微环境的新型合成结构,该环境在机械上具有凝聚力,并有利于再生医学中组织成骨细胞的培养。通过有限元分析(FEA)仿生建模,解剖重建,定量计算机断层扫描表征,组织支架的计算机设计相互研究了新型杂化的陶瓷-聚合物纳米复合材料。起始基础材料是支持者研究小组建立的一类创新的高生物活性杂化陶瓷-聚合物材料,将用作制备原位生物矿化构造构造的生物活性基质。多孔纳米复合材料。这项研究将仿生,生物力学和组织工程视为紧密相关的多学科领域,共同设计了骨组织支架。骨骼的生长,维持和骨化是基本的,并且受身体活动所施加的机械学信号的调节:在设计体外支架矿化和骨化的实验程序时将采用这种生物力学/生物力学方法。骨化。生物组织数学建模充当接口设计,仿真和组织制造的中央存储库。有限元计算机分析将用于研究局部组织力学在植入传统方案的患者临床病例的单相和多相连续体材料表征中对软骨内骨化模式,骨骼形态和下颌骨厚度分布的作用。新协议将成为使用新的生物构造结构混合材料的假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号