首页> 外文学位 >Sensing and reconstruction of sparse phenomena bounds and algorithms.
【24h】

Sensing and reconstruction of sparse phenomena bounds and algorithms.

机译:稀疏现象边界的感知和重构及算法。

获取原文
获取原文并翻译 | 示例

摘要

In this thesis we will consider the problem of sensing and reconstruction of sparse phenomena. In the first part of the thesis we will focus on the sensing aspects and consider the problem of finding fundamental performance limits of Sensor Networks (SNETs) for sensing sparse phenomena. We characterize the performance in terms of sensing capacity which is asymptotically defined as the maximum number of signal dimensions reliably identified per sensor. The notion of sensing capacity is directly related to the notion of compression rate which is useful to characterize the compressibility of sparse signals and has implications for Compressed Sensing (CS). In this work bounds to sensing capacity and compression rate are derived in an information theoretic framework. In particular we use information theoretic analysis to first derive novel upper and lower bounds to probability of error for (a) exact support recovery of sparse signals and (b) approximate signal recovery with an end to end distortion criteria and use these bounds to subsequently evaluate bounds to sensing capacity. We point out that the main difference between the CS and SNETs cases is in the way the SNR is accounted for and we reveal sharp contrasts between sensing capacities for the two cases under a fixed SNR, and linear observation model. We then consider the effect of sensing architecture on sensing capacity. Based on the results derived for approximate recovery we isolate the effect of sensing architecture in terms of mutual information between the data and sparse signal conditioned on the sensing functions. We then quantify the performance of some interesting cases of sensor network configurations considered in the literature.;In the second part of the thesis we focus on a practical problem of dispersion extraction from borehole acoustic array data, a problem that is of considerable interest to the geophysical community. Dispersion refers to a systematic variation of propagation slowness (= wavenumber divided by frequency) of the waves in the array data. In this work we present a novel broadband approach for automatic dispersion extraction. In contrast to previous approaches that are primarily narrowband and require user input such as model order for generating dispersion curves, this approach is capable of automatic model order selection and is more general than model based broadband approaches. The key idea and contribution here is recognition of a sparsity aspect of the underlying signal features, i.e. dispersion curves in the wavenumber-frequency domain, in a suitably chosen over-complete dictionary of basis elements in the f-k domain. We first propose a sparse signal reconstruction framework for dispersion extraction from the acoustic array data. Following that we propose a tractable sparsity penalized (regularized) reconstruction algorithm. For this set-up we present a novel strategy for the selection of regularization parameter based on the distribution of the residuals which is promising for model order selection. Furthermore using the time compactness of the transient signals we propose a hybrid strategy that exploits this time compactness of the waves in the space time domain in addition to sparsity in the (f -- k) domain for robust estimation of group slowness. We show the performance of the proposed methodology on synthetic data sets and also present a small error Cramer Rao Bound (CRB) for the group and the phase slowness being estimated.
机译:在本文中,我们将考虑稀疏现象的感知和重构问题。在本文的第一部分中,我们将重点放在感测方面,并考虑找到用于感测稀疏现象的传感器网络(SNET)的基本性能极限的问题。我们以感测能力为特征来表征性能,该能力渐近定义为每个传感器可靠识别的最大信号尺寸数量。感测能力的概念与压缩率的概念直接相关,压缩率的概念可用于表征稀疏信号的可压缩性,并且对压缩感测(CS)具有影响。在这项工作中,在信息理论框架中得出了感知能力和压缩率的界限。特别是,我们使用信息理论分析来首先得出错误概率的新颖上限和下限,以便(a)稀疏信号的精确支持恢复和(b)具有端到端失真标准的近似信号恢复,并使用这些界限进行后续评估限制感应能力。我们指出,CS和SNET案例之间的主要区别在于SNR的计算方式,并且我们揭示了在固定SNR和线性观测模型下,两种案例的感测能力之间的鲜明对比。然后,我们考虑传感架构对传感容量的影响。根据近似恢复得出的结果,我们根据数据和稀疏信号之间的互信息来隔离感测体系结构的影响,该稀疏信号取决于感测功能。然后,我们对文献中考虑的一些有趣的传感器网络配置情况的性能进行量化。在论文的第二部分中,我们着重于从井壁声波阵列数据中提取色散的实际问题,这一问题引起了人们的广泛关注。地球物理社区。色散是指阵列数据中波的传播慢度(=波数除以频率)的系统变化。在这项工作中,我们提出了一种用于自动色散提取的新颖宽带方法。与主要是窄带并且需要用户输入(例如用于生成色散曲线的模型阶数)的先前方法相比,该方法能够自动进行模型阶数选择,并且比基于模型的宽带方法更通用。此处的关键思想和贡献是,在适当选择的f-k域中的基础元素词典中,识别了基础信号特征的稀疏性,即波数-频率域中的色散曲线。我们首先提出一种稀疏信号重建框架,用于从声学阵列数据中提取色散。接下来,我们提出了一种难处理的稀疏惩罚(正规化)重构算法。对于此设置,我们提出了一种基于残差分布选择正则化参数的新颖策略,该策略有望用于模型顺序选择。此外,使用瞬态信号的时间紧凑性,我们提出了一种混合策略,除了(f-k)域中的稀疏性之外,还利用了时空域中波的这种时间紧凑性,从而可以可靠地估计组慢度。我们在合成数据集上显示了所提出方法的性能,并且还为该组和估计的相位慢度提出了一个小的误差Cramer Rao Bound(CRB)。

著录项

  • 作者

    Aeron, Shuchin.;

  • 作者单位

    Boston University.;

  • 授予单位 Boston University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 160 p.
  • 总页数 160
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:37:40

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号