首页> 外文期刊>Water Resources Management >Short-Term Reservoir Optimization for Flood Mitigation under Meteorological and Hydrological Forecast Uncertainty: Application to the Tres Marias Reservoir in Brazil
【24h】

Short-Term Reservoir Optimization for Flood Mitigation under Meteorological and Hydrological Forecast Uncertainty: Application to the Tres Marias Reservoir in Brazil

机译:气象水文预报不确定性下的短期水库减洪优化研究:在巴西Tres Marias水库中的应用

获取原文
获取原文并翻译 | 示例

摘要

State-of-the-art applications of short-term reservoir management integrate several advanced components, namely hydrological modelling and data assimilation techniques for predicting streamflow, optimization-based techniques for decision-making on the reservoir operation and the technical framework for integrating these components with data feeds from gauging networks, remote sensing data and meteorological weather predictions. In this paper, we present such a framework for the short-term management of reservoirs operated by the Companhia Energetica de Minas Gerais S.A. (CEMIG) in the Brazilian state of Minas Gerais. Our focus is the Tres Marias hydropower reservoir in the Sao Francisco River with a drainage area of approximately 55,000 km and its operation for flood mitigation. Basis for the anticipatory short-term management of the reservoir over a forecast horizon of up to 15 days are streamflow predictions of the MGB hydrological model. The semi-distributed model is well suited to represent the watershed and shows a Nash-Sutcliffe model performance in the order of 0.83-0.90 for most streamflow gauges of the data-sparse basin. A lead time performance assessment of the deterministic and probabilistic ECMWF forecasts as model forcing indicate the superiority of the probabilistic model. The novel short-term optimization approach consists of the reduction of the ensemble forecasts into scenario trees as an input of a multi-stage stochastic optimization. We show that this approach has several advantages over commonly used deterministic methods which neglect forecast uncertainty in the short-term decision-making. First, the probabilistic forecasts have longer forecast horizons that allow an earlier and therefore better anticipation of critical flood events. Second, the stochastic optimization leads to more robust decisions than deterministic procedures which consider only a single future trajectory. Third, the stochastic optimization permits to introduce advanced chance constraints for refining the system operation.
机译:短期水库管理的最新应用程序集成了几个高级组件,即用于预测水流的水文建模和数据同化技术,用于水库运营决策的基于优化的技术以及用于集成这些组件的技术框架来自测量网络的数据馈送,遥感数据和气象天气预报。在本文中,我们为巴西米纳斯吉拉斯州的米纳斯吉拉斯州公司(CEMIG)运营的储层短期管理提供了这样的框架。我们的重点是位于圣弗朗西斯科河的Tres Marias水库,其流域面积约为55,000公里,其运行方式是防洪。 MGB水文模型的水流预测是在长达15天的预测期内对水库进行短期短期管理的基础。半分布式模型非常适合表示分水岭,并且在数据稀疏盆地的大多数流量表中,Nash-Sutcliffe模型的性能约为0.83-0.90。对作为模型强迫的确定性和概率ECMWF预测的提前期性能评估表明了概率模型的优越性。新颖的短期优化方法包括将整体预测减少为场景树,作为多阶段随机优化的输入。我们表明,与在短期决策中忽略预测不确定性的常用确定性方法相比,该方法具有多个优点。首先,概率预报的预测范围更长,从而可以更早地并因此更好地预测重大洪水事件。其次,与仅考虑单个未来轨迹的确定性过程相比,随机优化可导致更可靠的决策。第三,随机优化允许引入高级机会约束以完善系统操作。

著录项

  • 来源
    《Water Resources Management》 |2015年第5期|1635-1651|共17页
  • 作者单位

    Department of Operational Water Management, Deltares, Rotterdamseweg 185, 26 MH Delft, The Netherlands;

    Institute de Pesquisas Hidraulicas (IPH), Universidade Federal do Rio Grande do Sul, Av. Bento Goncalves 9500, Porto Alegre, RS, CEP, 91501-970, Brazil;

    Advanced System Technology (AST) Branch of Fraunhofer IOSB, Ilmenau, Germany;

    Escola de Engenharia de Sao Carlos (EESC), Universidade de Sao Paulo (USP), Av. Trabalhador Sao-carlense 400, Sao Paulo, SP, CEP, 13566-590, Brazil;

    Institute of Hydraulic Engineering and Water Resources Management (WaWi), University of Duisburg-Essen (UDE), Universittsstrasse 15, 45141 Essen, Germany;

    Companhia Energetica de Minas Gerais S.A. (CEMIG), Belo Horizonte, Brazil;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Short-term reservoir optimization; Forecast uncertainty; Flood mitigation;

    机译:短期油藏优化;预测不确定性;防洪;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号