【24h】

Power modeling for high-level power estimation

机译:用于高级功率估算的功率建模

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a modeling approach that captures thendependence of the power dissipation of a combinational logic circuit onnits input/output signal switching statistics. The resulting powernmacromodel, consisting of a single four-dimensional table, can be usednto estimate the power consumed in the circuit for any given input/outputnsignal statistics. Given a low-level (typically gate-level) descriptionnof the circuit, we describe a characterization process by which such antable model can be automatically built. The four dimensions of ourntable-based model are the average input signal probability, averageninput transition density, average spatial correlation coefficient, andnaverage output zero-delay transition density. This approach has beennimplemented and models have been built for many benchmark circuits. Overna wide range of input signal statistics, we show that this model givesnvery good accuracy, with an rms error of about 4% and average error ofnabout 6%. Except for one out of about 10 000 cases, the largest errornobserved was under 20%. If one ignores the glitching activity, then thenrms error becomes under 1%, the average error becomes under 5%, and thenlargest error observed in all cases is under 18%
机译:在本文中,我们提出了一种建模方法,该方法可以捕获组合逻辑电路的功耗与输入/输出信号切换统计之间的依存关系。生成的功率宏模型由一个单一的四维表组成,可以用于估计任何给定的输入/输出信号统计数据在电路中消耗的功率。给定电路的低级描述(通常是门级),我们描述了一种表征过程,通过该过程可以自动建立这种不稳定模型。基于nourtable的模型的四个维度是平均输入信号概率,平均n输入过渡密度,平均空间相关系数和平均输出零延迟过渡密度。该方法已经实现,并且已经为许多基准电路建立了模型。在广泛的输入信号统计数据范围内,我们证明该模型具有非常好的准确性,均方根误差约为4%,平均误差约为6%。除了约1万例病例中的1例之外,未发现最大的错误在20%以下。如果忽略毛刺活动,则rms误差小于1%,平均误差小于5%,然后在所有情况下观察到的最大误差小于18%

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号