首页> 外文期刊>IEEE transactions on very large scale integration (VLSI) systems >Parasitics-Aware Design of Symmetric and Asymmetric Gate-Workfunction FinFET SRAMs
【24h】

Parasitics-Aware Design of Symmetric and Asymmetric Gate-Workfunction FinFET SRAMs

机译:对称和非对称栅极功函数FinFET SRAM的寄生感知设计

获取原文
获取原文并翻译 | 示例

摘要

Multigate FET technology is the most viable successor to planar CMOS technology at the 22-nm node and beyond. Prior research on multigate SRAMs is generally confined to the optimization of DC targets. However, on account of the nonplanar nature of multigate FETs, it is highly questionable whether multigate SRAM DC metrics can guide bitcell designers, as parasitic capacitances for two topologically equivalent bitcells can be very different—due to various issues such as fin pitches—resulting in widely varying transient characteristics. In this paper, we evaluate several known symmetric gate-workfunction (Symm-$Phi_{G}$) 6T FinFET SRAMs and, for the first time, asymmetric gate-workfunction (Asymm-$Phi_{G}$) 6T FinFET SRAMs, head-to-head in a 22-nm silicon-on-insulator process, from the perspective of transient behavior, using a unified 3-D/mixed-mode 2-D TCAD technology-circuit co-design methodology. We accomplish the latter by capturing bitcell parasitics accurately through transport analysis-based 3-D TCAD capacitance extractions that leverage automated layout-3-D TCAD structure synthesis algorithms. Mixed-mode transient device simulations (incorporating back-annotated 3-D TCAD parasitics) indicate that a design guided by DC metrics alone can lead to erroneous conclusions and suboptimal bitcell choices. Overall, from the perspective of area and performance, in single-$Phi_{G}$ processes, shorted-gate (or vanilla) configurations are superior to topologies employing independent-gate configurations, even though the latter often have better DC metrics. In a larger design space encompassing dual/Asymm-$Phi_{G}$ devices, Asymm- $Phi_{G}$
机译:多栅极FET技术是22纳米节点及以后的平面CMOS技术最可行的后继产品。先前对多栅极SRAM的研究通常仅限于DC目标的优化。但是,由于多栅极FET的非平面性质,多栅极SRAM DC度量标准能否指导位单元设计人员存在很大疑问,因为两个拓扑等效位单元的寄生电容可能会非常不同(由于鳍间距等各种问题),导致瞬态特性变化很大。在本文中,我们评估了几种已知的对称栅极功函数(Symm- $ Phi_ {G} $)6T FinFET SRAM,并且首次评估了非对称栅极功函数(Asymm- $ Phi_ {G} $)6T FinFET SRAM,从瞬态行为的角度出发,使用统一的3D /混合模式2D TCAD技术-电路协同设计方法,在22nm绝缘体上硅工艺中并肩作战。我们通过利用基于传输分析的3-D TCAD电容提取来精确捕获位元寄生,以利用自动布局3-D TCAD结构合成算法来完成后者。混合模式瞬态器件仿真(结合了带批注的3-D TCAD寄生效应)表明,仅靠DC度量标准进行指导的设计可能会导致错误的结论和次佳的位单元选择。总体而言,从面积和性能的角度来看,在单$ Phi_ {G} $流程中,短路门(或香草)配置优于采用独立门配置的拓扑,即使后者通常具有更好的DC度量。在包含双/ Asymm- $ Phi_ {G} $器件的更大设计空间中,Asymm- $ Phi_ {G} $

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号