首页> 外文期刊>Very Large Scale Integration (VLSI) Systems, IEEE Transactions on >Energy-Efficient Adaptive Hardware Accelerator for Text Mining Application Kernels
【24h】

Energy-Efficient Adaptive Hardware Accelerator for Text Mining Application Kernels

机译:用于文本挖掘应用程序内核的高效节能自适应硬件加速器

获取原文
获取原文并翻译 | 示例

摘要

Text mining is a growing field of applications, which enables the analysis of large text data sets using statistical methods. In recent years, exponential increase in the size of these data sets has strained existing systems, requiring more computing power, server hardware, networking interconnects, and power consumption. For practical reasons, this trend cannot continue in the future. Instead, we propose a reconfigurable hardware accelerator designed for text analytics systems, which can simultaneously improve performance and reduce power consumption. Situated near the last level of memory, it mitigates the need for high-bandwidth processor-to-memory connections, instead capitalizing on close data proximity, massively parallel operation, and analytic-inspired functional units to maximize energy efficiency, while remaining flexible to easily map common text analytic kernels. A field-programmable gate array-based emulation framework demonstrates the functional correctness of the system, and a full eight-core accelerator is synthesized for power, area, and delay estimates. The accelerator can achieve two to three orders of magnitude improvement in energy efficiency versus CPU and general-purpose graphics processing unit (GPU) for various text mining kernels. As a case study, we demonstrate how indexing performance of Lucene, a popular text search and analytics platform, can be improved by an average of 70% over CPU and GPU while significantly reducing data transfer energy and latency.
机译:文本挖掘是一个不断增长的应用领域,它可以使用统计方法来分析大型文本数据集。近年来,这些数据集大小的指数增长使现有系统紧张,需要更多的计算能力,服务器硬件,网络互连和功耗。出于实际原因,这种趋势将来无法继续。相反,我们提出了一种为文本分析系统设计的可重新配置的硬件加速器,它可以同时提高性能并减少功耗。它位于内存的最后一级附近,无需使用高带宽的处理器到内存,而是利用紧密的数据接近性,大规模并行操作和受分析启发的功能单元来最大程度地提高能源效率,同时保持灵活,轻松的优势。映射通用文本分析内核。基于现场可编程门阵列的仿真框架演示了系统的功能正确性,并为功率,面积和延迟估计综合了完整的八核加速器。与各种文本挖掘内核的CPU和通用图形处理单元(GPU)相比,该加速器可在能源效率方面实现两到三个数量级的提高。作为案例研究,我们演示了如何将Lucene(一种流行的文本搜索和分析平台)的索引性能比CPU和GPU平均提高70%,同时显着减少数据传输的能量和延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号