首页> 外文期刊>Thin Solid Films >Microvoid channel polymer photonic crystals with large infrared stop gaps and a multitude of higher-order bandgaps fabricated by femtosecond laser drilling in solid resin
【24h】

Microvoid channel polymer photonic crystals with large infrared stop gaps and a multitude of higher-order bandgaps fabricated by femtosecond laser drilling in solid resin

机译:飞秒激光在固体树脂中制造的微空隙通道聚合物光子晶体,具有大的红外光阑间隙和许多高阶带隙

获取原文
获取原文并翻译 | 示例
       

摘要

Photosensitive polymer materials are ideally suited for laser-induced micro- and nanostructuring, as structural and compositional changes are achieved already under exposure to moderate intensities of high-repetition rate ultrashort-pulsed light. Photonic crystals with bandgaps in the infrared or the visible spectral region are a particularly interesting application, because highly correlated structural elements at a size of only a few hundred nanometers are required. We fabricated infrared photonic crystals based on microvoid channels inside solid polymer material. Femtosecond-pulsed visible light was focused into UV-cured Norland NOA63 resin by a high numerical aperture objective. In the focal spot microexplosions drive the material out of the center of the focus. Void channels of 0.7-1.3 μm diameter are generated by translating the sample along a preprogrammed pathway. Woodpile structures of void channels at layer spacings of 1.6-2.6 μm and in-plane channel spacings of 1.2-1.3 μm allowed for bandgap-induced suppression of infrared transmission in the stacking direction of as much as 86% by only 20 layers. As these structures are highly correlated and do not contain many imperfections, up to three higher-order stop gaps are observed. Consistent with theory, the number and gapwidth of higher-order gaps strongly increases with the ratio between layer- and in-plane spacing. Due to their low refractive index contrast and the missing interconnectivity of voids our structures do not provide complete photonic bandgaps. However, their manifold of sizable higher-order gaps allows for the engineering of photonic stop gaps down to the near-infrared wavelength region using comparatively large structural dimensions.
机译:光敏聚合物材料非常适合激光诱导的微结构和纳米结构,因为在中等强度的高重复频率超短脉冲光照射下已经实现了结构和成分变化。在红外或可见光谱区域中具有带隙的光子晶体是特别有趣的应用,因为仅需要几百纳米的尺寸的高度相关的结构元素。我们基于固体聚合物材料内部的微孔通道制造了红外光子晶体。飞秒脉冲可见光通过高数值孔径物镜聚焦到紫外线固化的Norland NOA63树脂中。在焦点处,微爆炸将材料驱离焦点的中心。通过沿预先编程的路径平移样品,可以生成直径为0.7-1.3μm的空隙通道。以1.6-2.6μm的层间距和1.2-1.3μm的面内通道间距的空隙通道的木桩结构仅在20个层上就可以带隙诱导沿堆叠方向抑制高达86%的红外透射。由于这些结构高度相关,并且不包含许多缺陷,因此可以观察到多达三个更高阶的终止间隙。与理论一致,高阶间隙的数量和间隙宽度会随着层间距和面内间距之比而大大增加。由于它们的低折射率对比和缺少空隙的互连性,我们的结构无法提供完整的光子带隙。但是,它们较大的高阶间隙的歧管允许使用相对较大的结构尺寸对光子截止间隙进行工程设计,直至接近近红外波长区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号