...
首页> 外文期刊>Thin Solid Films >The M_(n+1)AX_n phases: Materials science and thin-film processing
【24h】

The M_(n+1)AX_n phases: Materials science and thin-film processing

机译:M_(n + 1)AX_n个阶段:材料科学和薄膜处理

获取原文
获取原文并翻译 | 示例
           

摘要

This article is a critical review of the M_(n+1)AX_n phases ("MAX phases", where n = 1,2, or 3) from a materials science perspective. MAX phases are a class of hexagonal-structure ternary carbides and nitrides ("X") of a transition metal ("M") and an A-group element. The most well known are Ti_2AlC, Ti_3SiC_2, and Ti_4AlN_3. There are ~60 MAX phases with at least 9 discovered in the last five years alone. What makes the MAX phases fascinating and potentially useful is their remarkable combination of chemical, physical, electrical, and mechanical properties, which in many ways combine the characteristics of metals and ceramics. For example, MAX phases are typically resistant to oxidation and corrosion, elastically stiff, but at the same time they exhibit high thermal and electrical conductivities and are machinable. These properties stem from an inherently nanolaminated crystal structure, with M_(n+1)X_n slabs intercalated with pure A-element layers. The research on MAX phases has been accelerated by the introduction of thin-film processing methods. Magnetron sputtering and arc deposition have been employed to synthesize single-crystal material by epitaxial growth, which enables studies of fundamental material properties. However, the surface-initiated decomposition of M_(n+1)AX_n thin films into MX compounds at temperatures of 1000-1100 ℃ is much lower than the decomposition temperatures typically reported for the corresponding bulk material. We also review the prospects for low-temperature synthesis, which is essential for deposition of MAX phases onto technologically important substrates. While deposition of MAX phases from the archetypical Ti-Si-C and Ti-Al-N systems typically requires synthesis temperatures of ~800 ℃, recent results have demonstrated that V_2GeC and Cr_2AlC can be deposited at ~450 ℃. Also, thermal spray of Ti_2AlC powder has been used to produce thick coatings. We further treat progress in the use of first-principle calculations for predicting hypothetical MAX phases and their properties. Together with advances in processing and materials analysis, this progress has led to recent discoveries of numerous new MAX phases such as Ti_4SiC_3, Ta_4AlC_3, and Ti_3SnC_2. Finally, important future research directions are discussed. These include charting the unknown regions in phase diagrams to discover new equilibrium and metastable phases, as well as research challenges in understanding their physical properties, such as the effects of anisotropy, impurities, and vacancies on the electrical properties, and unexplored properties such as superconductivity, magnetism, and optics.
机译:本文是从材料科学的角度对M_(n + 1)AX_n相(“ MAX相”,其中n = 1,2或3)进行的重要评论。 MAX相是过渡金属(“ M”)和A族元素的一类六方结构三元碳化物和氮化物(“ X”)。最著名的是Ti_2AlC,Ti_3SiC_2和Ti_4AlN_3。大约60个MAX阶段,仅在过去的五年中就发现了至少9个阶段。使MAX相令人着迷并可能有用的是它们在化学,物理,电气和机械性能方面的卓越结合,并在许多方面兼具了金属和陶瓷的特性。例如,MAX相通常具有抗氧化和抗腐蚀,弹性刚度的特性,但同时又具有很高的导热性和导电性,并且可以加工。这些性质源于固有的纳米层状晶体结构,其中M_(n + 1)X_n平板插入了纯A元素层。通过引入薄膜处理方法,MAX相的研究得到了加速。磁控溅射和电弧沉积已被用于通过外延生长合成单晶材料,这使得能够研究基本的材料特性。然而,在1000-1100℃的温度下,M_(n + 1)AX_n薄膜表面引发的分解为MX化合物要比相应的散装材料通常报道的分解温度低得多。我们还将回顾低温合成的前景,这对于将MAX相沉积到技术重要的基材上至关重要。从典型的Ti-Si-C和Ti-Al-N系统中沉积MAX相通常需要约800℃的合成温度,最近的结果表明V_2GeC和Cr_2AlC可以在约450℃下沉积。而且,Ti_2AlC粉末的热喷涂已用于生产厚涂层。我们进一步利用第一性原理计算来预测假设的MAX相位及其性质,从而取得进展。伴随着处理和材料分析的进步,这一进展导致最近发现了许多新的MAX相,例如Ti_4SiC_3,Ta_4AlC_3和Ti_3SnC_2。最后,讨论了重要的未来研究方向。其中包括在相图中绘制未知区域的图,以发现新的平衡相和亚稳态相,以及在理解其物理性质(例如各向异性,杂质和空位对电性质的影响)以及未探索的性质(例如超导性)方面的研究挑战,磁性和光学。

著录项

  • 来源
    《Thin Solid Films》 |2010年第8期|1851-1878|共28页
  • 作者单位

    Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linkoeping University, SE-581 83 Linkoping, Sweden;

    rnThin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linkoeping University, SE-581 83 Linkoping, Sweden;

    Department of Materials Chemistry, The Angstroem Laboratory, Uppsala University, Box 538, SE-751 21 Uppsala, Sweden;

    Thin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linkoeping University, SE-581 83 Linkoping, Sweden Impact Coatings AB, Westmansgatan 29, SE-582 16 Linkoeping, Sweden;

    rnThin Film Physics Division, Department of Physics, Chemistry, and Biology (IFM), Linkoeping University, SE-581 83 Linkoping, Sweden;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    nanolaminate; Ti_3SiC_2; Ti_2AlC; physical vapor deposition; sputtering; carbides; ceramics;

    机译:纳米层压板Ti_3SiC_2;Ti_2AlC;物理气相沉积;溅射碳化物;陶瓷;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号