首页> 外文期刊>Thin Solid Films >Initial growth mechanism of atomic layer deposited titanium dioxide using cyclopentadienyl-type precursor: A density functional theory study
【24h】

Initial growth mechanism of atomic layer deposited titanium dioxide using cyclopentadienyl-type precursor: A density functional theory study

机译:环戊二烯基型前驱体沉积原​​子层沉积二氧化钛的初始生长机理:密度泛函理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

The initial reaction mechanism of atomic layer deposited TiO_2 thin film on the silicon surface using Cp~*Ti(OCH_3)_3 as the metal precursor has been investigated by using the density functional theory. We find that Cp~*Ti(OCH_3)_3 adsorbed state can be formed via the hydrogen bonding interaction between CH_3O ligands and the Si- OH sites, which is in good agreement with the quadrupole mass spectrometry (QMS) experimental observations. Moreover, the desorption of adsorbed Cp~*Ti(OCH_3)_3 is favored in the thermodynamic equilibrium state. The elimination reaction of CH_3OH can occur more readily than that of Cp~*H during the Cp~*Ti(OCH_3)_3 pulse. This conclusion is also confirmed by the QMS experimental results.
机译:利用密度泛函理论研究了以Cp〜* Ti(OCH_3)_3为金属前驱体的原子层沉积在硅表面的TiO_2薄膜的初始反应机理。我们发现可以通过CH_3O配体与Si-OH位点之间的氢键相互作用形成Cp〜* Ti(OCH_3)_3吸附态,这与四极杆质谱(QMS)实验观察非常吻合。此外,在热力学平衡状态下,有利于吸附的Cp〜* Ti(OCH_3)_3的解吸。在Cp〜* Ti(OCH_3)_3脉冲期间,CH_3OH的消除反应比Cp〜* H的消除反应更容易发生。 QMS实验结果也证实了这一结论。

著录项

  • 来源
    《Thin Solid Films》 |2012年第2012期|179-184|共6页
  • 作者单位

    College of Science, Beijing Institute of Technology, Beijing 100081, China,College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China;

    College of Science, Hebei University of Science and Technology, Shijiazhuang 050018, China;

    College of Science, Beijing Institute of Technology, Beijing 100081, China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    density functional theory; dielectric; titanium dioxide; atomic layer deposition;

    机译:密度泛函理论;电介质二氧化钛;原子层沉积;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号