首页> 外文期刊>Thin Solid Films >Generation of uniaxial tensile strain of over 1% on a Ge substrate for short-channel strained Ge n-type Metal-Insulator-Semiconductor Field-Effect Transistors with SiGe stressors
【24h】

Generation of uniaxial tensile strain of over 1% on a Ge substrate for short-channel strained Ge n-type Metal-Insulator-Semiconductor Field-Effect Transistors with SiGe stressors

机译:带有SiGe应力源的短通道应变Ge n型金属-绝缘体-半导体场效应晶体管在Ge衬底上产生超过1%的单轴拉伸应变

获取原文
获取原文并翻译 | 示例
           

摘要

Tensile strain of over 1% in Ge stripes sandwiched between a pair of SiGe source-drain stressors was demonstrated. The Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET)-like structures were fabricated on a (001)-Ge substrate having SiO_2 dummy-gate stripes with widths down to 26 nm. Recess-regions adjacent to the dummy-gate stripes were formed by an anisotropic wet etching technique. A damage-free and well-controlled anisotropic wet etching process is developed in order to avoid plasma-induced damage during a conventional Reactive-ion Etching process. The SiGe stressors were epitaxially grown on the recesses to simulate strained Ge n-channel Metal-Insulator-Semiconductor Field-Effect Transistors (MISFETs) having high electron mobility. A micro-Raman spectroscopy measurement revealed tensile strain in the narrow Ge regions which became higher for narrower regions. Tensile strain of up to 1.2% was evaluated from the measurement under an assumption of uniaxial strain configuration. These results strongly suggest that higher electron mobility than the upper limit for a Si-MOSFET is obtainable in short-channel strained Ge-nMISFETs with the embedded SiGe stressors.
机译:结果表明,夹在一对SiGe源漏应力源之间的Ge条带中的拉伸应变超过1%。在具有SiO 2伪栅极条纹的宽度低至26nm的(001)-Ge衬底上制造了类似金属氧化物半导体场效应晶体管(MOSFET)的结构。通过各向异性湿蚀刻技术形成与伪栅极条纹相邻的凹陷区域。为了避免在常规的反应离子蚀刻工艺中等离子体引起的损伤,开发了一种无损且控制良好的各向异性湿法蚀刻工艺。在凹槽上外延生长SiGe应力源,以模拟具有高电子迁移率的应变Ge n沟道金属绝缘体半导体场效应晶体管(MISFET)。显微拉曼光谱测量显示出在狭窄的Ge区域中的拉伸应变,在狭窄的区域中变得更高。在单轴应变构型的假设下,通过测量评估了高达1.2%的拉伸应变。这些结果强烈表明,在具有嵌入式SiGe应力源的短沟道应变Ge-nMISFET中,可以获得比Si-MOSFET更高的电子迁移率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号