...
首页> 外文期刊>Thin Solid Films >Microwave-assisted low temperature fabrication of ZnO thin film electrodes for solar energy harvesting
【24h】

Microwave-assisted low temperature fabrication of ZnO thin film electrodes for solar energy harvesting

机译:微波辅助低温制备ZnO薄膜电极用于太阳能收集

获取原文
获取原文并翻译 | 示例
           

摘要

Metallic Zn thin films were electrodeposited on fluorine-doped tin oxide (FTO) glass substrates and oxidized under air by conventional radiant and microwave post-annealing methods to obtain ZnO thin film electrodes. The temperature of each post-annealing method was varied systematically and the photoelectrochemical (PEC) performance of electrodes was evaluated. The best photocurrent density achieved by the conventional radiant annealing method at 425 degrees C for 15 min was 93 mu A cm(-2) at 1.23 V vs. NHE and the electrode showed an incident photon-to-electron conversion efficiency (IPCE) of 28.2%. X-ray diffractogram of this electrode showed that the oxidation of Zn to ZnO was not completed during the radiant annealing process as evident by the presence of metallic Zn in the electrode. For the electrode oxidized from Zn to ZnO under microwave irradiation, a photocurrent of 130 mu A cm(-2) at 1.23 V vs. NHE and IPCE of 35.6% was observed after annealing for just 3 min, during which the temperature reached 250 degrees C. The photocurrent was 40% higher for the microwave annealed sample; this increase was attributed to higher surface area by preserving the nanostructure, confirmed by SEM surface topographical analysis, and better conversion yields to crystalline ZnO. Overall, it was demonstrated that oxidation of Zn to ZnO can be accomplished by microwave annealing five times faster than that of conventional annealing, thus resulting in a similar to 75% power saving. This study shows that microwave processing of materials offers significant economic and performance advantages for industrial scale up. (C) 2015 The Authors. Published by Elsevier B.V.
机译:将金属Zn薄膜电沉积在掺氟氧化锡(FTO)玻璃基板上,并通过常规的辐射和微波后退火方法在空气中氧化,以得到ZnO薄膜电极。系统地改变每种后退火方法的温度,并评估电极的光电化学(PEC)性能。通过常规辐射退火方法在425摄氏度下15分钟可获得的最佳光电流密度为1.23 V vs. NHE,为93μA cm(-2),电极显示的入射光子-电子转换效率(IPCE)为28.2%。该电极的X射线衍射图表明,在辐射退火过程中,没有将Zn氧化成ZnO,这是由于电极中存在金属Zn所证实的。对于在微波辐射下从Zn氧化为ZnO的电极,退火仅3分钟后,在1.23 V vs. NHE和IPCE为35.6%的条件下,观察到130μAcm(-2)的光电流,在此期间温度达到250度微波退火样品的光电流高40%;这种增加归因于通过保留纳米结构得到的更大的表面积(通过SEM表面形貌分析得到了证实)以及更好的转化率(向结晶ZnO转化)。总体而言,已证明可以通过微波退火将Zn氧化为ZnO的速度是传统退火速度的五倍,因此可节省近75%的电能。这项研究表明,材料的微波处理为工业规模扩大提供了显着的经济和性能优势。 (C)2015作者。由Elsevier B.V.发布

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号