...
首页> 外文期刊>Thin Solid Films >Adaptation of the surface-near Ga content in co-evaporated Cu(In,Ga)Se-2 for CdS versus Zn(S,O)-based buffer layers
【24h】

Adaptation of the surface-near Ga content in co-evaporated Cu(In,Ga)Se-2 for CdS versus Zn(S,O)-based buffer layers

机译:CdS与基于Zn(S,O)的缓冲层共蒸镀Cu(In,Ga)Se-2中近表面Ga含量的适应性

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work, we show that in order to optimize the efficiency of Cu(In1-x,Ga-x)Se-2 (CIGS) solar cells with Cd-free Zn(S,O)-based buffer layers, the Ga concentration in the CIGS absorber layer towards the hetero-interface has to be adapted. We varied the In and Ga deposition rates in the last stage of our 3-stage co-evaporation process, leading to different compositional ratios x(f) = [Ga] / ([Ga] + [In]) between 0.15 and 0.6 in the top 400 nm of the absorber layer. All absorber layers were then completed with both CdS and Zn(S, O) buffer layers by chemical bath deposition. While cells with our standard grading of x(f) approximate to 0.4 in the front region result in a best performance of 15% with a CdS buffer, similar efficiencies with a Zn(S, O) buffer layer are only obtained when the Ga content near the hetero-interface is reduced down to x(f) approximate to 0.25. The maximum efficiency for the CdS buffer layer coincides with the maximum open circuit voltage (V-oc) and fill factor (FF). Interestingly, for the Zn(S,O) buffer layer, this is not the case: the V-oc increases steadily for higher Ga ratios, while the FF is fairly constant for 0.25 < x < 0.5 and decreases drastically for more extreme values. The findings are explained by differences in the conduction band offsets which result from the conduction band shift close to the surface due to Ga content variations. The results illustrate the importance of the absorber layer adaptation for different buffer layers and are an important step on the way to Cd-free buffer layers. (C) 2014 Elsevier B.V. All rights reserved.
机译:在这项工作中,我们表明,为了优化具有无Cd Zn(S,O)基缓冲层的Cu(In1-x,Ga-x)Se-2(CIGS)太阳能电池的效率在CIGS吸收层中,必须朝向异质界面进行调整。在三阶段共蒸发过程的最后阶段,我们改变了In和Ga沉积速率,导致在0.15和0.6 in之间的不同组成比x(f)= [Ga] /([Ga] + [In])吸收层的顶部400 nm。然后,所有吸收层都通过化学浴沉积同时包含CdS和Zn(S,O)缓冲层。虽然我们的标准等级x(f)的电池在前部区域的结果约为0.4,但使用CdS缓冲液的最佳性能为15%,而仅当Ga含量达到Zn(S,O)缓冲层时才能获得相似的效率异质界面附近的值减小到x(f)大约为0.25。 CdS缓冲层的最大效率与最大开路电压(V-oc)和填充系数(FF)一致。有趣的是,对于Zn(S,O)缓冲层,情况并非如此:对于较高的Ga比率,V-oc稳定增加,而对于0.25

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号