首页> 外文期刊>The Visual Computer >Structure revealing techniques based on parallel coordinates plot
【24h】

Structure revealing techniques based on parallel coordinates plot

机译:基于平行坐标图的结构显示技术

获取原文
获取原文并翻译 | 示例

摘要

Parallel coordinates plot (PCP) is an excellent tool for multivariate visualization and analysis, but it may fail to reveal inherent structures for complex and large datasets. Therefore, polyline clustering and coordinate sorting are inevitable for the accurate data exploration and analysis. In this paper, we propose a suite of novel clustering and dimension sorting techniques in PCP, to reveal and highlight hidden trend and correlation information of polylines. Spectrum theory is first introduced to specifically design clustering and sorting techniques for a clear view of clusters in PCP. We also provide an efficient correlation based sorting technique to optimize the ordering of coordinates to reveal correlated relations, and show how our view-range metrics, generated based on the aggregation constraints, can be used to make a clear view for easy data perception and analysis. Experimental results generated using our framework visually represent meaningful structures to guide the user, and improve the efficiency of the analysis, especially for the complex and noisy data.
机译:平行坐标图(PCP)是用于多变量可视化和分析的出色工具,但它可能无法揭示复杂和大型数据集的固有结构。因此,为了准确地进行数据探索和分析,必须进行折线聚类和坐标排序。在本文中,我们提出了一套在PCP中新颖的聚类和维排序技术,以揭示和突出显示折线的隐藏趋势和相关信息。首先介绍频谱理论来专门设计聚类和排序技术,以使PCP中的聚类清晰可见。我们还提供了一种有效的基于相关性的排序技术,以优化坐标的排序以揭示相关关系,并展示如何基于聚集约束生成的视图范围度量可用于创建清晰的视图,以便于数据感知和分析。使用我们的框架生成的实验结果在视觉上代表了有意义的结构,可以指导用户并提高分析效率,尤其是对于复杂和嘈杂的数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号