首页> 外文期刊>The Visual Computer >Robust object tracking via multi-feature adaptive fusion based on stability: contrast analysis
【24h】

Robust object tracking via multi-feature adaptive fusion based on stability: contrast analysis

机译:通过基于稳定性的多特征自适应融合进行稳健的对象跟踪:对比分析

获取原文
获取原文并翻译 | 示例

摘要

Object tracking under complex circumstances is a challenging task because of background interference, obstacle occlusion, object deformation, etc. Given such conditions, robustly detecting, locating, and analyzing a target through single-feature representation are difficult tasks. Global features, such as color, are widely used in tracking, but may cause the object to drift under complex circumstances. Local features, such as HOG and SIFT, can precisely represent rigid targets, but these features lack the robustness of an object in motion. An effective method is adaptive fusion of multiple features in representing targets. The process of adaptively fusing different features is the key to robust object tracking. This study uses a multi-feature joint descriptor (MFJD) and the distance between joint histograms to measure the similarity between a target and its candidate patches. Color and HOG features are fused as the tracked object of the joint representation. This study also proposes a self-adaptive multi-feature fusion strategy that can adaptively adjust the joint weight of the fused features based on their stability and contrast measure scores. The mean shift process is adopted as the object tracking framework with multi-feature representation. The experimental results demonstrate that the proposed MFJD tracking method effectively handles background clutter, partial occlusion by obstacles, scale changes, and deformations. The novel method performs better than several state-of-the-art methods in real surveillance scenarios.
机译:由于背景干扰,障碍物遮挡,物体变形等原因,复杂情况下的目标跟踪是一项具有挑战性的任务。在这种情况下,通过单特征表示来稳健地检测,定位和分析目标是一项艰巨的任务。全局特征(例如颜色)已广泛用于跟踪,但是在复杂的环境下可能会导致物体漂移。像HOG和SIFT这样的局部特征可以精确地表示刚性目标,但是这些特征缺少运动对象的鲁棒性。一种有效的方法是在表示目标时对多个特征进行自适应融合。自适应融合不同特征的过程是强大的对象跟踪的关键。这项研究使用多特征联合描述符(MFJD)和联合直方图之间的距离来衡量目标与其候选补丁之间的相似性。将颜色和HOG特征融合为联合表示的跟踪对象。这项研究还提出了一种自适应的多特征融合策略,该策略可以基于融合特征的稳定性和对比度度量得分来自适应地调整其融合权重。采用均值平移过程作为具有多特征表示的目标跟踪框架。实验结果表明,所提出的MFJD跟踪方法能够有效处理背景杂波,障碍物部分遮挡,缩放变化和变形。在实际监视场景中,该新颖方法的性能优于几种最新方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号