首页> 外文期刊>Systems Analysis Modelling Simulation >MEDICAL DATA ANALYSIS USING SELF-ORGANIZING DATA MINING TECHNOLOGIES
【24h】

MEDICAL DATA ANALYSIS USING SELF-ORGANIZING DATA MINING TECHNOLOGIES

机译:使用自组织数据挖掘技术进行医学数据分析

获取原文
获取原文并翻译 | 示例

摘要

Three self-organizing data mining technologies that employ complementary descriptive languages ― parametric regression models (GMDH neural networks), fuzzy rules (self-organizing fuzzy rule induction), and similarity models (analog complexing based clustering and classification) ― are applied to generate diagnosis models of different levels of heart disease. The classification results show an accuracy of over 95% in average. Due to the strong knowledge extraction capabilities of the used technologies a nucleus of 4 most relevant variables is identified. The obtained results both classification accuracy and identified nucleus are also important for diagnosis cost reduction considerations.
机译:使用三种使用互补描述语言的自组织数据挖掘技术-参数回归模型(GMDH神经网络),模糊规则(自组织模糊规则归纳)和相似性模型(基于模拟复合的聚类和分类)-来生成诊断不同水平的心脏病的模型。分类结果显示平均准确率超过95%。由于所用技术具有强大的知识提取能力,因此可以确定4个最相关变量的核心。获得的分类准确度和已鉴定核的结果对于降低诊断成本也很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号