首页> 外文期刊>Systems Analysis Modelling Simulation >A NEW METHOD FOR ADAPTIVE MODEL-BASED CONTROL OF DYNAMIC INDUSTRIAL PLANTS USING NEURAL NETWORKS, FUZZY LOGIC AND FRACTAL THEORY
【24h】

A NEW METHOD FOR ADAPTIVE MODEL-BASED CONTROL OF DYNAMIC INDUSTRIAL PLANTS USING NEURAL NETWORKS, FUZZY LOGIC AND FRACTAL THEORY

机译:基于神经网络,模糊逻辑和分形理论的工业模型自适应模型控制新方法

获取原文
获取原文并翻译 | 示例

摘要

We describe in this paper a new method for adaptive model-based control of non-linear dynamic plants using Neural Networks, Fuzzy Logic and Fractal Theory. The new neuro―fuzzy-fractal method combines Soft Computing (SC) techniques with the concept of the fractal dimension for the domain of Non-Linear Dynamic Plant Control. The new method for adaptive model-based control has been implemented as a computer program to show that our neuro-fuzzy-fractal approach is a good alternative for controlling non-linear dynamic plants. We illustrate in this paper our new methodology with the case of controlling biochemical reactors in the food industry. For this case, we use mathematical models for the simulation of bacteria growth for several types of food. The goal of constructing these models is to capture the dynamics of bacteria population in food, so as to have a way of controlling this dynamics for industrial purposes.
机译:我们在本文中描述了一种使用神经网络,模糊逻辑和分形理论对非线性动态植物进行基于模型的自适应控制的新方法。新的神经模糊分形方法将软计算(SC)技术与非线性动态工厂控制领域的分形维数概念结合在一起。用于基于模型的自适应控制的新方法已作为计算机程序实现,以表明我们的神经模糊分形方法是控制非线性动态植物的理想选择。我们在本文中以控制食品工业中的生化反应器为例说明了我们的新方法。对于这种情况,我们使用数学模型来模拟几种食物的细菌生长。建立这些模型的目的是捕获食品中细菌种群的动态,从而为工业目的提供一种控制这种动态的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号