首页> 外文期刊>Structural and Multidisciplinary Optimization >Target-matching test problem for multiobjective topology optimization using genetic algorithms
【24h】

Target-matching test problem for multiobjective topology optimization using genetic algorithms

机译:使用遗传算法进行多目标拓扑优化的目标匹配测试问题

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the multiobjective topology optimization of continuum structures solved as a discrete optimization problem using a multiobjective genetic algorithm (GA) with proficient constraint handling. Crucial to the effectiveness of the methodology is the use of a morphological geometry representation that defines valid structural geometries that are inherently free from checkerboard patterns, disconnected segments, or poor connectivity. A graph- theoretic chromosome encoding, together with compatible reproduction operators, helps facilitate the transmission of topological/shape characteristics across generations in the evolutionary process. A multicriterion target-matching problem developed here is a novel test problem, where a predefined target geometry is the known optimum solution, and the good results obtained in solving this problem provide a convincing demonstration and a quantitative measure of how close to the true optimum the solutions achieved by GA methods can be. The methodology is then used to successfully design a path-generating compliant mechanism by solving a multicriterion structural topology optimization problem.
机译:本文介绍了使用具有熟练约束处理能力的多目标遗传算法(GA)作为离散优化问题解决的连续体结构的多目标拓扑优化。该方法的有效性至关重要的是使用形态学几何图形表示法,该图形学表示法定义了固有的无棋盘图案,不连续节段或连通性差的有效结构几何图形。图论染色体编码,以及兼容的复制算子,有助于促进进化过程中几代人之间拓扑/形状特征的传递。此处开发的多准则目标匹配问题是一个新颖的测试问题,其中预定义的目标几何形状是已知的最佳解决方案,解决该问题所获得的良好结果提供了令人信服的证明和定量方法,可证明该目标与实际最优值的接近程度。可以用GA方法解决问题。然后,该方法可用于通过解决多准则结构拓扑优化问题来成功设计路径生成兼容机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号