首页> 外文期刊>Structural and Multidisciplinary Optimization >Model parameter tuning by cross validation and global optimization: application to the wing weight fitting problem
【24h】

Model parameter tuning by cross validation and global optimization: application to the wing weight fitting problem

机译:通过交叉验证和整体优化对模型参数进行调整:在机翼配重问题上的应用

获取原文
获取原文并翻译 | 示例

摘要

Model parameter tuning is a fundamental step in any data-fitting problem and of great importance in the final quality of the resulting approximation. Two different sets of model parameters will lead to two different interpolation models that behave very differently between the data points even if both sets of parameters lead to perfect interpolation. The main goal of this paper is to discuss the importance of finding the optimal parameters that will lead to the best prediction model of the given data. This task can be hard, particularly when the number of model parameters is high (usually when the dimension of the problem is high). The wing weight fitting problem is used to illustrate the difficulties in obtaining the best possible approximation in practice.
机译:模型参数调整是任何数据拟合问题中的基本步骤,对于最终逼近的最终质量至关重要。两组不同的模型参数将导致两个不同的插值模型,即使两组参数都导致完美的插值,该插值模型在数据点之间的行为也非常不同。本文的主要目的是讨论寻找最佳参数的重要性,该参数将导致给定数据的最佳预测模型。这项任务可能很难完成,尤其是在模型参数数量很多时(通常在问题的维数很高时)。机翼配重拟合问题用于说明在实践中获得最佳可能近似值的困难。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号