首页> 外文期刊>Structural and Multidisciplinary Optimization >Toward an optimal ensemble of kernel-based approximations with engineering applications
【24h】

Toward an optimal ensemble of kernel-based approximations with engineering applications

机译:在工程应用中寻求基于核的近似的最佳集合

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a general approach toward the optimal selection and ensemble (weighted average) of kernel-based approximations to address the issue of model selection. That is, depending on the problem under consideration and loss function, a particular modeling scheme may outperform the others, and, in general, it is not known a priori which one should be selected. The surrogates for the ensemble are chosen based on their performance, favoring non-dominated models, while the weights are adaptive and inversely proportional to estimates of the local prediction variance of the individual surrogates. Using both well-known analytical test functions and, in the surrogate-based modeling of a field scale alkali-surfactant-polymer enhanced oil recovery process, the ensemble of surrogates, in general, outperformed the best individual surrogate and provided among the best predictions throughout the domains of interest.
机译:本文提出了一种基于核逼近的最优选择和集成(加权平均)的通用方法,以解决模型选择的问题。也就是说,取决于所考虑的问题和损失函数,特定的建模方案可能会胜过其他建模方案,并且通常,先验地知道应该选择哪个建模方案是未知的。根据整体的性能来选择整体的替代物,偏爱非主导模型,而权重是自适应的,并且与各个替代物的局部预测方差的估计值成反比。使用众所周知的分析测试功能,以及在基于替代品的现场规模的碱表面活性剂-聚合物增强采油工艺建模中,替代品的整体性能优于最佳的单个替代品,并在整个预测中提供了最佳的预测感兴趣的领域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号