首页> 外文期刊>Structural and Multidisciplinary Optimization >Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique
【24h】

Constrained optimization based on hybrid evolutionary algorithm and adaptive constraint-handling technique

机译:基于混合进化算法和自适应约束处理技术的约束优化

获取原文
获取原文并翻译 | 示例

摘要

A novel approach to deal with numerical and engineering constrained optimization problems, which incorporates a hybrid evolutionary algorithm and an adaptive constraint-handling technique, is presented in this paper. The hybrid evolutionary algorithm simultaneously uses simplex crossover and two mutation operators to generate the offspring population. Additionally, the adaptive constraint-handling technique consists of three main situations. In detail, at each situation, one constraint-handling mechanism is designed based on current population state. Experiments on 13 benchmark test functions and four well-known constrained design problems verify the effectiveness and efficiency of the proposed method. The experimental results show that integrating the hybrid evolutionary algorithm with the adaptive constraint-handling technique is beneficial, and the proposed method achieves competitive performance with respect to some other state-of-the-art approaches in constrained evolutionary optimization.
机译:本文提出了一种解决数值和工程约束优化问题的新方法,该方法结合了混合进化算法和自适应约束处理技术。混合进化算法同时使用单纯形交叉和两个变异算子来生成后代种群。另外,自适应约束处理技术包括三种主要情况。详细地,在每种情况下,根据当前的人口状态设计一种约束处理机制。通过对13种基准测试功能和4个著名的约束设计问题的实验,验证了该方法的有效性和效率。实验结果表明,将混合进化算法与自适应约束处理技术集成在一起是有益的,并且该方法相对于约束进化优化中的其他一些最新方法具有竞争优势。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号