首页> 外文期刊>Structural and Multidisciplinary Optimization >Classification approach for reliability-based topology optimization using probabilistic neural networks
【24h】

Classification approach for reliability-based topology optimization using probabilistic neural networks

机译:基于概率神经网络的基于可靠性的拓扑优化分类方法

获取原文
获取原文并翻译 | 示例

摘要

This research explores the usage of classification approaches in order to facilitate the accurate estimation of probabilistic constraints in optimization problems under uncertainty. The efficiency of the proposed framework is achieved with the combination of a conventional topology optimization method and a classification approach- namely, probabilistic neural networks (PNN). Specifically, the implemented framework using PNN is useful in the case of highly nonlinear or disjoint failure domain problems. The effectiveness of the proposed framework is demonstrated with three examples. The first example deals with the estimation of the limit state function in the case of disjoint failure domains. The second example shows the efficacy of the proposed method in the design of stiffest structure through the topology optimization process with the consideration of random field inputs and disjoint failure phenomenon, such as buckling. The third example demonstrates the applicability of the proposed method in a practical engineering problem.
机译:这项研究探索了分类方法的使用,以便于在不确定情况下的优化问题中准确估计概率约束。提出的框架的效率是通过将常规拓扑优化方法和分类方法(即概率神经网络(PNN))相结合来实现的。具体而言,在高度非线性或不相交的故障域问题的情况下,使用PNN实施的框架很有用。通过三个示例证明了所提出框架的有效性。第一个示例在不相交的故障域的情况下处理极限状态函数的估计。第二个例子显示了该方法在通过拓扑优化过程设计最硬结构时的有效性,其中考虑了随机场输入和不连续的破坏现象,例如屈曲。第三个示例说明了该方法在实际工程问题中的适用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号