首页> 外文期刊>Structural and Multidisciplinary Optimization >Level set topology optimization of stationary fluid-structure interaction problems
【24h】

Level set topology optimization of stationary fluid-structure interaction problems

机译:平稳流固耦合问题的水平集拓扑优化

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

This paper introduces a topology optimization approach that combines an explicit level set method (LSM) and the extended finite element method (XFEM) for designing the internal structural layout of fluid-structure interaction (FSI) problems. The FSI response is predicted by a monolithic solver that couples an incompressible Navier-Stokes flow model with a small-deformation solid model. The fluid mesh is modeled as an elastic continuum that deforms with the structure. The fluid model is discretized with stabilized finite elements and the structural model by a generalized formulation of the XFEM. The nodal parameters of the discretized level set field are defined as explicit functions of the optimization variables. The optimization problem is solved by a nonlinear programming method. The LSM-XFEM approach is studied for two- and three-dimensional FSI problems at steady-state and compared against a density topology optimization approach. The numerical examples illustrate that the LSM-XFEM approach convergences to well-defined geometries even on coarse meshes, regardless of the choice of objective and constraints. In contrast, the density method requires refined grids and a mass penalization to yield smooth and crisp designs. The numerical studies show that the LSM-XFEM approach can suffer from a discontinuous evolution of the design in the optimization process as thin structural members disconnect. This issue is caused by the interpolation of the level set field and the inability to represent particular geometric configurations in the XFEM model. While this deficiency is generic to the LSM-XFEM approach used here, it is pronounced by the nonlinear response of FSI problems.
机译:本文介绍了一种拓扑优化方法,该方法结合了显式水平集方法(LSM)和扩展有限元方法(XFEM)来设计流固耦合问题(FSI)的内部结构布局。 FSI响应是由整体求解器预测的,该求解器将不可压缩的Navier-Stokes流模型与小变形实体模型耦合。流体网格被建模为随结构变形的弹性连续体。通过XFEM的广义公式将流体模型离散化为稳定的有限元和结构模型。离散水平集字段的节点参数定义为优化变量的显式函数。通过非线性规划方法解决了优化问题。针对稳态下的二维和三维FSI问题,研究了LSM-XFEM方法,并与密度拓扑优化方法进行了比较。数值示例表明,无论选择何种目标和约束条件,即使在粗糙网格上,LSM-XFEM方法也可以收敛到定义良好的几何形状。相比之下,密度方法需要精炼的网格和大量的惩罚以产生平滑而清晰的设计。数值研究表明,由于薄结构构件的断开,LSM-XFEM方法在优化过程中会遭受设计的不连续演变。此问题是由于水平集字段的插值和无法在XFEM模型中表示特定的几何配置而引起的。尽管此缺陷对于此处使用的LSM-XFEM方法是通用的,但FSI问题的非线性响应会明显说明这一缺陷。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号