首页> 外文期刊>Statistics and computing >Detecting anomalies in fibre systems using 3-dimensional image data
【24h】

Detecting anomalies in fibre systems using 3-dimensional image data

机译:使用三维图像数据检测光纤系统中的异常

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of detecting anomalies in the directional distribution of fibre materials observed in 3D images. We divide the image into a set of scanning windows and classify them into two clusters: homogeneous material and anomaly. Based on a sample of estimated local fibre directions, for each scanning window we compute several classification attributes, namely the coordinate wise means of local fibre directions, the entropy of the directional distribution, and a combination of them. We also propose a new spatial modification of the Stochastic Approximation Expectation-Maximization (SAEM) algorithm. Besides the clustering we also consider testing the significance of anomalies. To this end, we apply a change point technique for random fields and derive the exact inequalities for tail probabilities of a test statistic. The proposed methodology is first validated on simulated images. Finally, it is applied to a 3D image of a fibre reinforced polymer.
机译:我们考虑在3D图像中观察到的纤维材料方向分布中检测异常的问题。我们将图像划分为一组扫描窗口,并将它们分为两个群集:均匀的材料和异常。基于估计的局部光纤方向的样本,对于每个扫描窗口,我们计算若干分类属性,即局部光纤方向的坐标明智装置,方向分布的熵和它们的组合。我们还提出了一种新的随机近似期望预期 - 最大化(SAEM)算法的空间修改。除了聚类之外,我们还考虑测试异常的重要性。为此,我们应用随机字段的变更点技术,并导出测试统计的尾部概率的确切不等式。在模拟图像上首次验证所提出的方法。最后,它应用于纤维增强聚合物的3D图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号