首页> 外文期刊>Statistics and computing >A breakpoint detection in the mean model with heterogeneous variance on fixed time intervals
【24h】

A breakpoint detection in the mean model with heterogeneous variance on fixed time intervals

机译:固定时间间隔上均质方差均值模型中的断点检测

获取原文
获取原文并翻译 | 示例

摘要

This work is motivated by an application for the homogenization of global navigation satellite system (GNSS)-derived integrated water vapour series. Indeed, these series are affected by abrupt changes due to equipment changes or environmental effects. The detection and correction of the series from these changes are a crucial step before any use for climate studies. In addition to these abrupt changes, it has been observed in the series a non-stationary of the variability. We propose in this paper a new segmentation model that is a breakpoint detection in the mean model of a Gaussian process with heterogeneous variance on known time intervals. In this segmentation case, the dynamic programming algorithm used classically to infer the breakpoints cannot be applied anymore. We propose a procedure in two steps: we first estimate robustly the variances and then apply the classical inference by plugging these estimators. The performance of our proposed procedure is assessed through simulation experiments. An application to real GNSS data is presented.
机译:这项工作的动机是来自于全球导航卫星系统(GNSS)衍生的综合水汽系列均质化的应用程序。实际上,由于设备变化或环境影响,这些系列会受到突然变化的影响。从这些变化中检测和校正系列是任何用于气候研究的关键步骤。除了这些突然的变化之外,在系列中还观察到了变化的非平稳性。我们在本文中提出了一种新的分割模型,该模型是高斯过程均值模型中在已知时间间隔上具有异构方差的断点检测。在这种分割情况下,经典的用来推断断点的动态编程算法不再适用。我们提出一个分两步的程序:首先稳健地估计方差,然后通过插入这些估计器来应用经典推断。通过模拟实验评估了我们提出的程序的性能。提出了对实际GNSS数据的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号