首页> 外文期刊>Statistics and computing >Robust finite mixture modeling of multivariate unrestricted skew-normal generalized hyperbolic distributions
【24h】

Robust finite mixture modeling of multivariate unrestricted skew-normal generalized hyperbolic distributions

机译:多元无限制倾斜正态广义双曲分布的鲁棒有限混合建模

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce an unrestricted skew-normal generalized hyperbolic (SUNGH) distribution for use in finite mixture modeling or clustering problems. The SUNGH is a broad class of flexible distributions that includes various other well-known asymmetric and symmetric families such as the scale mixtures of skew-normal, the skew-normal generalized hyperbolic and its corresponding symmetric versions. The class of distributions provides a much needed unified framework where the choice of the best fitting distribution can proceed quite naturally through either parameter estimation or by placing constraints on specific parameters and assessing through model choice criteria. The class has several desirable properties, including an analytically tractable density and ease of computation for simulation and estimation of parameters. We illustrate the flexibility of the proposed class of distributions in a mixture modeling context using a Bayesian framework and assess the performance using simulated and real data.
机译:在本文中,我们介绍了一种用于有限混合建模或聚类问题的无限制倾斜正态广义双曲(SUNGH)分布。 SUNGH是一类广泛的弹性分布,包括各种其他众所周知的不对称和对称族,例如偏正态,偏正态广义双曲线及其对应的对称版本的比例混合。分布类别提供了一个急需的统一框架,在该框架中,可以通过参数估计或对特定参数施加约束并通过模型选择标准进行评估来自然地进行最佳拟合分布的选择。该类具有几个理想的属性,包括分析上易处理的密度以及易于仿真和估计参数的计算能力。我们使用贝叶斯框架说明了在混合建模环境中提议的分布类别的灵活性,并使用模拟和真实数据评估了性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号