首页> 外文期刊>Statistics and computing >Control variates for stochastic gradient MCMC
【24h】

Control variates for stochastic gradient MCMC

机译:随机梯度MCMC的控制变量

获取原文
获取原文并翻译 | 示例

摘要

It is well known that Markov chain Monte Carlo (MCMC) methods scale poorly with dataset size. A popular class of methods for solving this issue is stochastic gradient MCMC (SGMCMC). These methods use a noisy estimate of the gradient of the log-posterior, which reduces the per iteration computational cost of the algorithm. Despite this, there are a number of results suggesting that stochastic gradient Langevin dynamics (SGLD), probably the most popular of these methods, still has computational cost proportional to the dataset size. We suggest an alternative log-posterior gradient estimate for stochastic gradient MCMC which uses control variates to reduce the variance. We analyse SGLD using this gradient estimate, and show that, under log-concavity assumptions on the target distribution, the computational cost required for a given level of accuracy is independent of the dataset size. Next, we show that a different control-variate technique, known as zero variance control variates, can be applied to SGMCMC algorithms for free. This postprocessing step improves the inference of the algorithm by reducing the variance of the MCMC output. Zero variance control variates rely on the gradient of the log-posterior; we explore how the variance reduction is affected by replacing this with the noisy gradient estimate calculated by SGMCMC.
机译:众所周知,马尔可夫链蒙特卡洛(MCMC)方法在数据集大小上的伸缩性很差。解决此问题的一类流行方法是随机梯度MCMC(SGMCMC)。这些方法使用对数后梯度的嘈杂估计,从而降低了算法的每次迭代计算成本。尽管如此,仍有许多结果表明,随机梯度朗格文动力学(SGLD),可能是这些方法中最流行的一种,仍然具有与数据集大小成比例的计算成本。我们建议使用控制变量来减少方差的随机梯度MCMC的对数后验梯度估计。我们使用此梯度估计来分析SGLD,并表明,在目标分布的对数凹度假设下,给定精度水平所需的计算成本与数据集大小无关。接下来,我们表明可以将另一种称为零方差控制变量的控制变量技术免费应用于SGMCMC算法。此后处理步骤通过减少MCMC输出的方差来改善算法的推论。零方差控制变量依赖于对数后验的梯度;我们探索了如何用SGMCMC计算的噪声梯度估计值代替方差减小的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号