首页> 外文期刊>Statistics and computing >Conditional simulation from highly structured Gaussian systems, with application to blocking-MCMC for the Bayesian analysis of very large linear models
【24h】

Conditional simulation from highly structured Gaussian systems, with application to blocking-MCMC for the Bayesian analysis of very large linear models

机译:来自高度结构化的高斯系统的条件模拟,并应用于分块MCMC,以对大型线性模型进行贝叶斯分析

获取原文
获取原文并翻译 | 示例

摘要

This paper examines strategies for simulating exactly from large Gaussian linear models conditional on some Gaussian observations. Local computation strategies based on the conditional independence structure of the model are developed in order to reduce costs associated with storage and computation. Application of these algorithms to simulation from nested hierarchical linear models is considered, and the construction of efficient MCMC schemes for Bayesian inference in high-dimensional linear models is outlined.
机译:本文研究了在某些高斯观测条件下,从大型高斯线性模型中精确模拟的策略。为了减少与存储和计算相关的成本,开发了基于模型的条件独立性结构的局部计算策略。考虑了将这些算法应用于嵌套层次线性模型的仿真,并概述了高维线性模型中用于贝叶斯推理的有效MCMC方案的构造。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号