首页> 外文期刊>Statistics and computing >Pairwise likelihood estimation for multivariate mixed Poisson models generated by Gamma intensities
【24h】

Pairwise likelihood estimation for multivariate mixed Poisson models generated by Gamma intensities

机译:Gamma强度生成的多元混合Poisson模型的成对似然估计

获取原文
获取原文并翻译 | 示例

摘要

Estimating the parameters of multivariate mixed Poisson models is an important problem in image processing applications, especially for active imaging or astronomy. The classical maximum likelihood approach cannot be used for these models since the corresponding masses cannot be expressed in a simple closed form. This paper studies a maximum pairwise likelihood approach to estimate the parameters of multivariate mixed Poisson models when the mixing distribution is a multivariate Gamma distribution. The consistency and asymptotic normality of this estimator are derived. Simulations conducted on synthetic data illustrate these results and show that the proposed estimator outperforms classical estimators based on the method of moments. An application to change detection in low-flux images is also investigated.
机译:估计多元混合泊松模型的参数是图像处理应用程序中的一个重要问题,尤其是对于主动成像或天文学。经典的最大似然方法不能用于这些模型,因为相应的质量不能以简单的封闭形式表示。当混合分布为多元伽马分布时,本文研究了一种最大对似然法来估计多元混合泊松模型的参数。推导了该估计量的一致性和渐近正态性。对合成数据进行的仿真说明了这些结果,并表明所提出的估计器优于基于矩量法的经典估计器。还研究了在低通量图像中进行变化检测的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号