首页> 外文期刊>Statistics and computing >Permutation tests for between-unit fixed effects in multivariate generalized linear mixed models
【24h】

Permutation tests for between-unit fixed effects in multivariate generalized linear mixed models

机译:多元广义线性混合模型中单元间固定效应的置换检验

获取原文
获取原文并翻译 | 示例

摘要

A permutation testing approach in multivariate mixed models is presented. The solutions proposed allow for testing between-unit effect; they are exact under some assumptions, while approximated in the more general case. The classes of models comprised by this approach include generalized linear models, vector generalized additive models and other nonparametric models based on smoothing. Moreover it does not assume observations of different units to have the same distribution. The extensions to a multivariate framework are presented and discussed. The proposed multivariate tests exploit the dependence among variables, hence increasing the power with respect to other standard solutions (e.g. Bonferroni correction) which combine many univariate tests in an overall one. Examples are given of two applications to real data from psychological and ecological studies; a simulation study provides some insight into the unbiasedness of the tests and their power. The methods were implemented in the R package flip, freely available on CRAN.
机译:提出了多元混合模型中的排列检验方法。提出的解决方案可以测试单位之间的效果;在某些假设下它们是精确的,而在更一般的情况下近似。该方法包括的模型类别包括广义线性模型,向量广义加性模型以及其他基于平滑的非参数模型。此外,它不假设不同单位的观测值具有相同的分布。提出并讨论了对多元框架的扩展。拟议的多变量检验利用了变量之间的依赖性,因此相对于将许多单变量检验结合在一起的其他标准解决方案(例如Bonferroni校正)而言,其功效得到了提高。举例说明了对心理学和生态学研究中的真实数据的两种应用;仿真研究为测试的公正性及其功效提供了一些见识。这些方法在R包翻转中实现,可在CRAN上免费获得。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号