首页> 外文期刊>Statistics and computing >Penalised spline estimation for generalised partially linear single-index models
【24h】

Penalised spline estimation for generalised partially linear single-index models

机译:广义部分线性单指标模型的惩罚样条估计

获取原文
获取原文并翻译 | 示例

摘要

Generalised linear models are frequently used in modeling the relationship of the response variable from the general exponential family with a set of predictor variables, where a linear combination of predictors is linked to the mean of the response variable. We propose a penalised spline (P-spline) estimation for generalised partially linear single-index models, which extend the generalised linear models to include nonlinear effect for some predictors. The proposed models can allow flexible dependence on some predictors while overcome the "curse of dimensionality". We investigate the P-spline profile likelihood estimation using the readily available R package mgcv, leading to straightforward computation. Simulation studies are considered under various link functions. In addition, we examine different choices of smoothing parameters. Simulation results and real data applications show effectiveness of the proposed approach. Finally, some large sample properties are established.
机译:广义线性模型经常用于对来自一般指数族的响应变量与一组预测变量的关系进行建模,其中预测变量的线性组合与响应变量的均值链接。我们提出了广义部分线性单指标模型的惩罚样条(P样条)估计,它扩展了广义线性模型以包括一些预测变量的非线性影响。所提出的模型可以允许对某些预测变量的灵活依赖,同时克服了“维数的诅咒”。我们使用容易获得的R包mgcv研究了P样条曲线的似然估计,从而实现了直接计算。在各种链接功能下都考虑了仿真研究。另外,我们研究了平滑参数的不同选择。仿真结果和实际数据应用证明了该方法的有效性。最后,建立了一些大样本属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号