首页> 外文期刊>Statistical Methodology >Processing MUSE hyperspectral data: Denoising,deconvolution and detection of astrophysical sources
【24h】

Processing MUSE hyperspectral data: Denoising,deconvolution and detection of astrophysical sources

机译:处理MUSE高光谱数据:对天体物理源进行去噪,反卷积和检测

获取原文
获取原文并翻译 | 示例

摘要

We address the problem of processing astronomical hyperspectral data cubes in the context of the forthcoming MUSE instrument. MUSE, which is under construction, will provide massive hyperspectral data with about 300 x 300 pixels at approximately 4000 wavelengths. One of its main astrophysical objectives concerns the observation of extragalactic deep fields, where MUSE should be able to detect and characterize galaxies much fainter than the ones currently observed by other ground-based instruments. The data will suffer, however, from very powerful and spectrally variable perturbations.In this paper, MUSE data cubes are first considered as a collection of spectra, which are processed independently. A restoration method is proposed, based on the hypothesis that data can be approximated by appropriate sparse representations. Sparsity can be naturally expressed in the spectral domain, where a galaxy spectrum is mainly the superposition of an emission and absorption line spectrum, which is naturally sparse, on a continuum, which is supposed to have a sparse discrete cosine transform. The problem is addressed within the e~1-norm penalization setting. The original features of the model consist, first, in taking into account observational specificities such as the spectrally variable instrumental response and non-identically distributed noise, and, second, in tuning regularization parameters in this setting, which are fixed in order to obtain uniform false alarm rates for decomposition coefficients. In a second step, such sparse decompositions are used as an input to an object detection and characterization method. The decomposed spectra are first used for spatial segmentation. Then, once a group of pixels has been identified as belonging to the same object, the corresponding spectrum and amplitude map are jointly estimated under the former sparsity assumption. Applications to object identification, the amplitude map and spectrum estimation are presented for realistic deep field simulated data cubes provided by the MUSE consortium.
机译:我们在即将推出的MUSE仪器中解决了处理天文高光谱数据立方体的问题。正在建设中的MUSE将在大约4000个波长下提供约300 x 300像素的海量高光谱数据。它的主要天体目标之一是观测银河外深场,MUSE应当能够探测和表征比目前其他地面仪器观测到的星系更暗的星系。但是,数据将受到非常强大且频谱可变的扰动的影响。在本文中,MUSE数据立方体首先被视为是光谱的集合,它们是独立处理的。基于这样的假设,提出了一种恢复方法:可以通过适当的稀疏表示来近似数据。稀疏性可以自然地表示在光谱域中,在该光谱域中,星系光谱主要是在连续体上自然稀疏的发射和吸收线谱的叠加,而该连续体应该具有稀疏的离散余弦变换。在e〜1范数惩罚设置中可以解决该问题。该模型的原始特征在于,首先,考虑到观测的特殊性,例如光谱可变的仪器响应和不均匀分布的噪声;其次,在此设置中调整正则化参数,这些参数是固定的,以便获得统一的分解系数的错误警报率。在第二步骤中,将这种稀疏分解用作对象检测和表征方法的输入。分解后的光谱首先用于空间分割。然后,一旦一组像素已被识别为属于同一对象,则在以前的稀疏性假设下共同估算相应的光谱和幅度图。提出了对象识别,振幅图和频谱估计的应用,用于由MUSE联盟提供的现实的深场模拟数据立方体。

著录项

  • 来源
    《Statistical Methodology》 |2012年第2期|p.32-43|共12页
  • 作者单位

    Laboratoire Cassiopee UMR 6202, University of Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229,06304 Nice Cedex 4, France;

    Laboratoire AH. Fizeau UMR 6525, University of Nice Sophia Antipolis. CNRS, Observatoire de la Cote d'Azur, B.P. 4229,06304 Nice Cedex 4, France;

    Laboratoire Cassiopee UMR 6202, University of Nice Sophia Antipolis, CNRS, Observatoire de la Cote d'Azur, B.P. 4229,06304 Nice Cedex 4, France;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    noise reduction; deconvolution; sparse decompositions; detection; hyperspectral imaging data;

    机译:降低噪音;去卷积稀疏分解检测;高光谱成像数据;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号