首页> 外文期刊>Solid-State Electronics >Evaluation of GaAs Schottky gate bipolar transistor (SGBT) by electrothermal simulation
【24h】

Evaluation of GaAs Schottky gate bipolar transistor (SGBT) by electrothermal simulation

机译:GaAs肖特基栅双极晶体管(SGBT)的电热模拟评估

获取原文
获取原文并翻译 | 示例
           

摘要

A GaAs alternative to the Si IGBT, employing an implanted lateral channel in place of the usual MOSFET inversion channel, is proposed. A simplified analytical model shows that the relatively high ratio of electron to hole mobility in GaAs allows much lower anode emitter injection efficiencies to be used without compromising conductivity modulation of the base region. This, in turn. means that a higher proportion of the total device current is carried by electrons. Design strategies for the GaAs SGBT are investigated and applied in the design of an optimised unit cell. The optimised structure is compared with an equivalent Si IGBT structure by means of electrothermal and transient simulation. Electrothermal simulation shows the GaAs device to have useable performance at junction temperatures in excess of 300℃. a feature which is consistent with the wide band-gap of GaAs. Transient simulations show reduced minority carrier tailing effects at both turn-on and turn-off with initial turn-off tail currents being reduced by a factor of 5 compared to the Si IGBT. The resulting reduction in turn-of T loss allows switching frequencies to be increased by a factor of 4 fOr the same total losses. The excellent switching performance derives from the relatively low proportion of hole current needed to ensure effective conductivity modulation of the structure.
机译:提出了一种GaSi替代Si IGBT的方法,该方法采用注入的横向沟道代替通常的MOSFET反向沟道。简化的分析模型表明,GaAs中较高的电子与空穴迁移率之比使得可以使用低得多的阳极发射极注入效率,而不会影响基极区的电导率调制。这又。意味着电子在总器件电流中所占的比例更高。研究了GaAs SGBT的设计策略,并将其应用于优化的晶胞设计中。通过电热和瞬态仿真将优化的结构与等效的Si IGBT结构进行比较。电热仿真表明,GaAs器件在结温超过300℃时具有可用的性能。与GaAs的宽带隙一致的特征。瞬态仿真表明,与Si IGBT相比,导通和关断时少数载流子拖尾效应均减小,初始关断尾电流降低了5倍。所产生的导通T损耗的减少使开关频率增加了4倍,或者总损耗相同。出色的开关性能源于确保结构有效电导率调制所需的相对较低的空穴电流比例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号