首页> 外文期刊>Solid-State Electronics >Design and optimization of junction termination extension (JTE) for 4H-SiC high voltage Schottky diodes
【24h】

Design and optimization of junction termination extension (JTE) for 4H-SiC high voltage Schottky diodes

机译:4H-SiC高压肖特基二极管结终止扩展(JTE)的设计和优化

获取原文
获取原文并翻译 | 示例
       

摘要

This paper analyzes single- and double-zone junction termination extension (JTE) structures for 4H-SiC Schottky diodes using numerical simulations. In the single-zone case, we study the effects of JTE dose, depth, length, metal/JTE overlap length, and surface or interface charge. In the double-zone case, we systematically vary the inner and outer doses over about 80 possible combinations for each of three sets of inner and outer zone widths. The total JTE width is constrained to be that necessary for optimum breakdown voltage in the single-zone case. The results are presented as contour plots of breakdown voltage and maximum surface field as a function of the two doses, with the locations of peak bulk and surface fields also indicated at each point. The resulting tolerance to variations in activated dose can then be visualized directly. The physics underlying the shapes of the contours is explained in some detail. We show that JTE behavior is significantly different for Schottky diodes compared to the better-known case of p(i)n junction diodes. The peak surface field is increased for Schottky diodes when the single-zone dose is reduced below its optimum value, which is opposite to the behavior of pn junctions. Moreover, double-zone JTE is not effective in reducing peak surface field for the Schottky case, unlike pn junctions, although tolerance to dose variations can be improved with two zones. The usual rule of thumb for double-zone JTE design for pn junctions is not appropriate for Schottky diodes, because of the field crowding near the sharp metal edge. We recommend an inner dose of 95-105% of the ideal single-zone and an outer dose of 70-80% of the single-zone value, with a width ratio of ~1:1 for the inner and outer zones and a total width similar to the optimal value in a single-zone design.
机译:本文使用数值模拟分析了4H-SiC肖特基二极管的单区和双区结终止扩展(JTE)结构。在单区情况下,我们研究了JTE剂量,深度,长度,金属/ JTE重叠长度以及表面或界面电荷的影响。在双区域的情况下,我们针对三组内部和外部区域宽度中的每组,系统地更改了大约80种可能组合的内部和外部剂量。 JTE的总宽度必须限制为单区域情况下最佳击穿电压所需的宽度。结果显示为击穿电压和最大表面场随两个剂量变化的等高线图,峰值体积和表面场的位置也显示在每个点上。然后可以直接看到所产生的对激活剂量变化的耐受性。轮廓形状的基本物理原理得到了详细解释。我们显示,与更知名的p(i)n结二极管的情况相比,肖特基二极管的JTE行为显着不同。当单区剂量降低到其最佳值以下时,肖特基二极管的峰值表面场会增加,这与pn结的行为相反。此外,与pn结不同,双区域JTE在减小肖特基情况下的峰值表面场方面无效,尽管可以通过两个区域提高剂量变化的容忍度。对于pn结的双区JTE设计,通常的经验法则不适用于肖特基二极管,因为在尖锐的金属边缘附近电场拥挤。我们建议内部剂量为理想单区域的95-105%,外部剂量为单区域值的70-80%,内部区域和外部区域的宽度比约为1:1,并且宽度类似于单区域设计中的最佳值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号