首页> 外文期刊>Solid-State Electronics >Impact of device scaling on the 1/f noise performance of deep submicrometer thin gate oxide CMOS devices
【24h】

Impact of device scaling on the 1/f noise performance of deep submicrometer thin gate oxide CMOS devices

机译:器件缩放对深亚微米薄栅氧化物CMOS器件的1 / f噪声性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

This paper presents the effects of technology and geometry scaling on the 1/f noise performance of deep submicrometer transistors taken from four advanced CMOS technologies, namely the 0.13 μm, 0.18 μm, 0.25 μm and 0.35 μm nodes. For the 0.13 μm technology node, three different process flavours consisting of the generic (G) process flow, the low voltage/high performance (LV/HP) process flow and the low standby power (LSP) process flow have been investigated. The higher degree of gate dielectric nitridation with technology downscaling from 0.35 μm node to 0.13 μm G node has resulted in a severe degradation of the 1/f noise performance of the transistors by approximately three orders of magnitude. On the contrary, the employment of 0.13 μm LSP transistors have been demonstrated to lower the 1/f noise spectra by approximately two orders of magnitude as compared to the 0.13 μm LV/HP transistors, which gives the worst 1/f noise performance among the three different process flavours in the 0.13 μm node. The study of device geometry scaling on 0.13 μm LSP transistors shows that in general the scaling trend follows the S_(Id) ∝ W/L~3 rule, where S_(Id), W and L represent the current noise spectral density, the active gate width and length of the transistor, respectively. For devices with gate area < 1μm~2, a large dispersion in the 1/f noise level can be seen. This phenomenon has been correlated to the existence of Lorentzian-like spectra for small area transistors. The investigation of the effect of scaling the transistor's aspect ratio (W/L) reveals a (S_(Id) x WL) ∝ (W/L)~2 dependence.
机译:本文介绍了技术和几何尺寸缩放对采用四种先进CMOS技术(即0.13μm,0.18μm,0.25μm和0.35μm节点)的深亚微米晶体管的1 / f噪声性能的影响。对于0.13μm技术节点,已研究了三种不同的工艺类型,包括通用(G)工艺流程,低电压/高性能(LV / HP)工艺流程和低待机功耗(LSP)工艺流程。随着技术从0.35μm节点降到0.13μmG节点,更高程度的栅极介电氮化程度已导致晶体管的1 / f噪声性能严重降低了大约三个数量级。相反,事实证明,与0.13μmLV / HP晶体管相比,采用0.13μmLSP晶体管可将1 / f噪声频谱降低大约两个数量级,从而在1 / f噪声性能中表现最差。在0.13μm节点中具有三种不同的加工风味。对0.13μmLSP晶体管的器件几何定标的研究表明,定标趋势通常遵循S_(Id)∝ W / L〜3规则,其中S_(Id),W和L代表当前噪声频谱密度,有源晶体管的栅极宽度和长度。对于栅极面积<1μm〜2的器件,可以看到1 / f噪声水平存在较大的色散。这种现象与小面积晶体管的洛伦兹样光谱的存在有关。对缩放晶体管的长宽比(W / L)的效果的研究揭示了(S_(Id)x WL)∝(W / L)〜2的依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号