首页> 外文期刊>Solid-State Electronics >Granular description of charging kinetics in silicon nanocrystals memories
【24h】

Granular description of charging kinetics in silicon nanocrystals memories

机译:硅纳米晶体存储器中电荷动力学的粒度描述

获取原文
获取原文并翻译 | 示例
       

摘要

In this paper we present a new model of charging kinetics in Silicon nanocrystals memories based on a granular charging of a floating gate. In 2000, a previous model, due to De Salvo and co-workers, was based on a continuous charging of a floating gate, borrowed from the conventional of non-volatile floating gate memories model. We will summarise the main equations of the latter and try to compare the results with current-voltage and current-time measurements. We will show that this approach only allows a qualitative description of the charging kinetics but is not accurate enough to perfectly fit the experimental data. Its main limitation lies in a lack of describing the granular nature of the storage nodes: a fraction of an electron—or of a hole—can be stored inside a nanocrystal. This, of course, is not really correct. Instead, our new model admits only two available states: a nanocrystal is neutral or is charged with one electron. This simple logic will enable an accurate description of nanocrystals memories with granular effects unpredictable with De Salvo's approach. The charging kinetics in our model is more accurately described in all regimes and better incorporates the effect of the nanocrystals size distribution permitting direct extraction of this one from current-voltage measurements. An advantage of our model is enhanced by the analytical leading equations approach easy to incorporate in a simulator and directly applicable to memory devices. It is fast and easy to handle.
机译:在本文中,我们提出了一种基于浮栅的颗粒状电荷的硅纳米晶体存储器中的电荷动力学新模型。在2000年,由于De Salvo及其同事的缘故,先前的模型基于对浮栅的连续充电,该浮栅源于传统的非易失性浮栅存储器模型。我们将总结后者的主要方程,并尝试将结果与电流-电压和电流时间测量结果进行比较。我们将证明,这种方法仅允许对充电动力学进行定性描述,但不够精确,无法完美拟合实验数据。它的主要局限性在于缺乏描述存储节点的颗粒性质的方法:一部分电子(或空穴)可以存储在纳米晶体内部。当然,这并不是真的正确。相反,我们的新模型仅允许两个可用状态:纳米晶体是中性的或带有一个电子。这种简单的逻辑将能够准确描述纳米晶体存储器,并具有De Salvo的方法无法预测的颗粒效应。我们在模型中的充电动力学可以在所有情况下更准确地描述,并且更好地结合了纳米晶体尺寸分布的影响,从而可以从电流-电压测量中直接提取出该晶体。我们的模型的优势是通过易于在仿真器中集成并直接适用于存储设备的分析领先方程法增强的。它快速且易于处理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号