首页> 外文期刊>Solid-State Electronics >Facile pyrolytic synthesis of silicon nanowires
【24h】

Facile pyrolytic synthesis of silicon nanowires

机译:硅纳米线的轻松热解合成

获取原文
获取原文并翻译 | 示例
       

摘要

One-dimensional nanostructures such as silicon nanowires (SiNW) are attractive candidates for low power density electronic and optoelectronic devices including sensors. A new simple method for SiNW bulk synthesis [1,2] is demonstrated in this work, which is inexpensive and uses low toxicity materials, thereby offering a safe, energy efficient and green approach. The method uses low flammability liquid phenylsilanes, offering a safer avenue for SiNW growth compared with using silane gas. A novel, duo-chamber glass vessel is used to create a low-pressure environment where SiNWs are grown through vapor-liquid-solid mechanism using gold nanoparticles as a catalyst. The catalyst decomposes silicon precursor vapors of diphenylsilane and triphenylsilane and precipitates single crystal SiNWs, which appear to grow parallel to the substrate surface. This opens up possibilities for synthesizing nano-junc-tions amongst wires which is important for the grid architecture of nanoelectronics proposed by Likharev [3]. Even bulk synthesis of SiNW is feasible using sacrificial substrates such as CaCO_3 that can be dissolved post-synthesis. Furthermore, by dissolving appropriate dopants in liquid diphenylsilane, a controlled doping of the nanowires is realized without the use of toxic gases and expensive mass flow controllers. Upon boron doping, we observe a characteristic red shift in photoluminescence spectra. In summary, an inexpensive and versatile method for SiNW is presented that makes these exotic materials available to any lab at low cost.
机译:一维纳米结构(例如硅纳米线(SiNW))是低功率密度电子和光电设备(包括传感器)的有吸引力的候选材料。这项工作证明了一种用于SiNW本体合成的新的简单方法[1,2],该方法便宜且使用低毒性材料,从而提供了一种安全,节能和绿色的方法。该方法使用低易燃性液体苯基硅烷,与使用硅烷气体相比,为SiNW的生长提供了更安全的途径。一种新颖的双腔玻璃容器用于创建低压环境,在该低压环境中,SiNWs通过使用金纳米颗粒作为催化剂的气液固机理生长。催化剂分解二苯基硅烷和三苯基硅烷的硅前体蒸气,并沉淀出单晶SiNW,单晶SiNW似乎平行于基材表面生长。这为在导线之间合成纳米结开辟了可能性,这对于Likharev [3]提出的纳米电子的网格结构很重要。使用可以在合成后溶解的牺牲基质(例如CaCO_3),甚至可以批量合成SiNW。此外,通过将适当的掺杂剂溶解在液体二苯基硅烷中,无需使用有毒气体和昂贵的质量流量控制器即可实现纳米线的受控掺杂。硼掺杂后,我们在光致发光光谱中观察到特征性红移。总而言之,提出了一种廉价且通用的SiNW方法,该方法可将这些奇异材料以低成本提供给任何实验室。

著录项

  • 来源
    《Solid-State Electronics》 |2010年第10期|P.1185-1191|共7页
  • 作者单位

    Advanced Logic Components, Ronler Acres, Intel, Hillsboro, OR 97124, USA;

    Portland State University, Chemistry Department, Portland, OR 97207, USA;

    Army Research Laboratory, Adelphi Lab Center, 2800 Powder Mill Road, Adeiphi, MD 20783-1197, USA;

    Portland State University, Chemistry Department, Portland, OR 97207, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    silicon nanowires; dopants; photoluminescence; cold nanoparticles; HR-TEM;

    机译:硅纳米线;掺杂剂光致发光冷纳米颗粒;透射电镜;
  • 入库时间 2022-08-18 01:34:57

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号