首页> 外文期刊>Solid-State Electronics >Investigation of electron mobility in surface-channel Al_2O_3/In_(0.53)Ga_(0.47)As MOSFETs
【24h】

Investigation of electron mobility in surface-channel Al_2O_3/In_(0.53)Ga_(0.47)As MOSFETs

机译:表面沟道Al_2O_3 / In_(0.53)Ga_(0.47)As MOSFET中电子迁移率的研究

获取原文
获取原文并翻译 | 示例
       

摘要

We report on the mechanisms limiting the electron mobility in surface-channel Al_2O_3/lnGaAs MOSFETs. The electron mobility was obtained using pulsed I_d - V_g and split C-V measurements. The energy profile of the density of interface states along with the equivalent-surface density of fixed positive oxide charge were obtained from the modeling of the gate-to-channel capacitance versus gate voltage (C_(gc) - V_g) characteristic. The experimental C_(gc) - V_g characteristic was modeled using a self-consistent Poisson-Schroedinger solver, while the electron mobility was calculated using the Kubo-Greenwood formula with nonparabolic corrections. Even when taking into account the impact of fixed oxide charges, Al_2O_3/In_(0.53)-Ga_(0.47)As interface states within the In_(0.53)Ga_(0.47)As energy gap and aligned with the conduction band and the impact of remote phonon scattering, the mobility calculations revealed that the Al_2O_3/In_(0.53)Ga_(0.47)As surface roughness was the dominant mechanism limiting the electron mobility at high inversion charge density. The values of surface roughness predicted from the combined modeling and experimental results were confirmed by atomic force microscopy measurements and the process step responsible for the increased InGaAs surface roughness was identified.
机译:我们报告了限制表面沟道Al_2O_3 / InGaAs MOSFET中电子迁移率的机制。电子迁移率是使用脉冲I_d-V_g和分开的C-V测量获得的。通过对栅-沟道电容对栅电压(C_(gc)-V_g)特性进行建模,可以获得界面态密度的能量分布以及固定的正氧化物电荷的等效表面密度。实验性C_(gc)-V_g特性是使用自洽的Poisson-Schroedinger求解器建模的,而电子迁移率是使用Kubo-Greenwood公式进行非抛物线校正的。即使考虑到固定氧化物电荷的影响,Al_2O_3 / In_(0.53)-Ga_(0.47)As界面也处于In_(0.53)Ga_(0.47)As能隙内,并与导带和远距离影响保持一致声子散射,迁移率计算表明,Al_2O_3 / In_(0.53)Ga_(0.47)As表面粗糙度是限制高反型电荷密度下电子迁移率的主要机理。由组合的模型和实验结果预测的表面粗糙度值通过原子力显微镜测量得到证实,并确定了导致InGaAs表面粗糙度增加的工艺步骤。

著录项

  • 来源
    《Solid-State Electronics》 |2013年第10期|37-42|共6页
  • 作者单位

    Tyndall National Institute, University College Cork, Lee Makings, Cork, Ireland;

    Tyndall National Institute, University College Cork, Lee Makings, Cork, Ireland;

    General Technical Services, US Army Research Laboratory, RDRL-SER-E, 2800 Powder Mill Road, Adelphi, MD 20783, USA;

    Tyndall National Institute, University College Cork, Lee Makings, Cork, Ireland;

    Tyndall National Institute, University College Cork, Lee Makings, Cork, Ireland;

    Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine;

    Tyndall National Institute, University College Cork, Lee Makings, Cork, Ireland;

    Tyndall National Institute, University College Cork, Lee Makings, Cork, Ireland;

    Tyndall National Institute, University College Cork, Lee Makings, Cork, Ireland;

    Tyndall National Institute, University College Cork, Lee Makings, Cork, Ireland;

    Tyndall National Institute, University College Cork, Lee Makings, Cork, Ireland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    InGaAs; Mobility; MOSFET; High-k; Interface traps; Pulsed I_d - V_g;

    机译:铟镓砷流动性MOSFET;高k;接口陷阱;脉冲I_d-V_g;
  • 入库时间 2022-08-18 01:34:26

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号