首页> 外文期刊>Solid-State Electronics >Process optimization and device variation of Mg-doped ZnO FBARs
【24h】

Process optimization and device variation of Mg-doped ZnO FBARs

机译:镁掺杂ZnO FBAR的工艺优化与器件变化

获取原文
获取原文并翻译 | 示例
       

摘要

Thin film bulk acoustic resonator (FBAR) plays a very important role in radio frequency (RF) filters used in cell phone and other wireless systems. Although FBAR is commercialized, the design/process interactions on the frequency response variation in FBAR device are still lacking. Design and fabrication are two crucial aspects affecting FBAR device performance. In this report, various solidly mounted resonators (SMR) were designed, fabricated and analyzed to study wafer-level site-to-site RF variation on design and fabrication process. As a key process step for SMR FBAR, the optimization process of Mg-doped ZnO piezoelectric thin film deposition was studied by varying thin film sputtering conditions using various sputtering targets and by post annealing treatment after the deposition. The quality of this crucial layer was verified by XRD on its (0 0 2) crystallization and wafer-level FBAR RF characterization. FBAR devices with high quality were fabricated with an excellent resonant behavior near 2 GHz and a maximum return loss of -15 to 25 dB. Quality factor Q ranges from 400 to 800, with a coupling coefficient keff(2) of 1.5-3%. Wafer-level and wafer-to-wafer variation of central frequency are within 1.8-2.1 GHz. Computer simulation verified that this frequency variation correlates to the piezoelectric film variation of 1.6-1.9 mu m. Process control on this piezoelectric thin film is essential to maintaining the resonator frequency-controlled value when building duplexer RF circuits. The dependency of RF performance on FBAR size, density and orientation is not obvious, compared to that of the wafer-level FBAR device variation on fabrication process. Regarding to the Mg-doping effect in MgxZn1-xO piezoelectric film, the amount of Mg in MgxZn1-xO film during the sputtering process must be properly controlled within 30% to keep the piezoelectric quality. The average acoustic speed of the Mg-doped ZnO film is 6870 m/s with the estimated range of 5760-7980 m/s, which is better than that of pure ZnO film (6330 m/s).
机译:薄膜体声波谐振器(FBAR)在手机和其他无线系统中使用的射频(RF)滤波器中起着非常重要的作用。尽管FBAR已商业化,但仍缺乏与FBAR器件的频率响应变化相关的设计/过程交互作用。设计和制造是影响FBAR器件性能的两个关键方面。在本报告中,设计,制造和分析了各种固体安装的谐振器(SMR),以研究晶圆级站点到站点RF在设计和制造过程中的变化。作为SMR FBAR的关键工艺步骤,通过使用各种溅射靶改变薄膜溅射条件并在沉积后进行后退火处理,研究了掺Mg的ZnO压电薄膜沉积的优化工艺。 XRD通过(0 0 2)结晶和晶圆级FBAR RF表征验证了这一关键层的质量。制造的高质量FBAR器件在2 GHz附近具有出色的谐振性能,最大回波损耗为-15至25 dB。品质因数Q范围从400到800,耦合系数keff(2)为1.5-3%。中心频率的晶圆级和晶圆间差异在1.8-2.1 GHz之内。计算机仿真证明,该频率变化与1.6-1.9μm的压电膜变化有关。在构建双工器RF电路时,对该压电薄膜的过程控制对于保持谐振器频率控制值至关重要。与晶圆级FBAR器件制造工艺上的变化相比,RF性能对FBAR尺寸,密度和方向的依赖性并不明显。关于MgxZn1-xO压电膜中的Mg掺杂效果,在溅射过程中,必须将MgxZn1-xO膜中的Mg含量适当地控制在30%以内,以保持压电质量。掺Mg的ZnO薄膜的平均声速为6870 m / s,估计范围为5760-7980 m / s,比纯ZnO薄膜的平均声速(6330 m / s)好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号