首页> 外文期刊>Solar Energy >Degradation analysis of 3J InGaP/InGaAs/InGaAsN solar cell due to irradiation induced defects with a comparative study on bottom homo and hetero InGaAsN subcell
【24h】

Degradation analysis of 3J InGaP/InGaAs/InGaAsN solar cell due to irradiation induced defects with a comparative study on bottom homo and hetero InGaAsN subcell

机译:3J InGaP / InGaAs / InGaAsN太阳电池由于辐照引起的缺陷而进行的降解分析以及底部均质和杂质InGaAsN子电池的比较研究

获取原文
获取原文并翻译 | 示例
       

摘要

The influence of irradiation induced traps in the triple junction In0.49Ga0.51P/In0.01Ga0.99As/In0.30Ga0.70As0.98N0.02 solar cell was studied using finite element analysis. The total 3J solar cell structure was simulated separately with homo and hetero InGaAsN structure as the third or bottom subcell. The higher efficient 3J InGaP/InGaAs/InGaAsN solar cell with bottom InGaAsN heterostructure was analyzed by including irradiation induced trap levels. The trap levels correspond to 1 MeV electron irradiation with fluence range of 1 x 10(14)-1 x 10(16) in electrons/cm(2) at room temperature. We realized that the traps in the middle cell cause more degradation, followed by bottom cell and then top cell. The onset of degradation of solar cell parameters (J(sc), V-oc, and eta) starts at trap concentration 1 x 10(13) cm(-3), while more degradation occurs beyond 1 x 10(16) cm(-3). At trap concentration of 1 x 10(16) cm(-3), the solar cell design was optimized for achieving current matching among the subcells. While we obtained 36% conversion efficiency at 1-sun (AMO spectrum) using bottom heterostructure, the introduction of 1 x 10(16) cm(-3) trap concentration and 10(4) cm/s surface recombination velocity simultaneously in all subcells resulted in 20.8% conversion efficiency which increased to 24.3% after current matching.
机译:使用有限元分析研究了三结In0.49Ga0.51P / In0.01Ga0.99As / In0.30Ga0.70As0.98N0.02太阳能电池中辐照引起的陷阱的影响。分别以均质和杂质InGaAsN结构作为第三或底部子电池分别模拟了整个3J太阳能电池的结构。通过包括辐射诱导的陷阱能级,对具有底部InGaAsN异质结构的高效3J InGaP / InGaAs / InGaAsN太阳能电池进行了分析。陷阱能级对应于室温下1 MeV电子辐射,注量范围为1×10(14)-1 x 10(16)电子/ cm(2)。我们意识到中间单元中的陷阱会导致更多的降解,其次是底部单元,然后是顶部单元。太阳能电池参数(J(sc),V-oc和eta)的降解开始于陷阱浓度1 x 10(13)cm(-3),而更多的降解发生在1 x 10(16)cm( -3)。在陷阱浓度为1 x 10(16)cm(-3)时,优化了太阳能电池设计以实现子电池之间的电流匹配。虽然我们使用底部异质结构在1-sun(AMO光谱)下获得了36%的转换效率,但在所有子电池中同时引入了1 x 10(16)cm(-3)陷阱浓度和10(4)cm / s表面重组速度导致转换效率为20.8%,经过电流匹配后提高到24.3%。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号