首页> 外文期刊>Solar Energy >Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Fe_2O_3/Fe_3O_4 redox reactions: Thermodynamic and kinetic analyses
【24h】

Solar electricity via an Air Brayton cycle with an integrated two-step thermochemical cycle for heat storage based on Fe_2O_3/Fe_3O_4 redox reactions: Thermodynamic and kinetic analyses

机译:通过空气布雷顿循环和集成的两步热化学循环来存储基于Fe_2O_3 / Fe_3O_4氧化还原反应的热量的太阳能:热力学和动力学分析

获取原文
获取原文并翻译 | 示例
       

摘要

Solar electricity production via an Air Brayton cycle is considered with integrated thermochemical energy storage. The storage is realized via a two-step solar thermochemical cycle based on Fe2O3 /Fe3O4 reduction-oxidation reactions, encompassing (1) the thermal reduction of Fe2O3 to Fe3O4 and O-2 driven by concentrated solar irradiation under vacuum; and (2) the exothermic oxidation of Fe3O4 with a compressed air stream back to Fe2O3. The steps may be decoupled, resulting in a high temperature, pressurized airflow that is expanded across a turbine to produce on-demand electricity. A thermodynamic analysis of the system determined a maximum cycle efficiency of 46.0% at a solar concentration ratio of 4000 suns, an oxidation pressure of 30 bar, and an approximately 5:1 molar flow rate ratio of air to solid Fe2O3 exiting the re-oxidizer. Chemical kinetics for the thermal reduction of Fe2O3 were determined between approximately 1400 and 1700 K using non-isothermal thermogravimetry with heating rates between 10 and 20 K.s(-1) and O-2 partial pressures between 0 and 0.05 bar. The rate-limiting reaction mechanism was determined to be nucleation, and kinetic parameters were resolved using an Avrami-Erofe'ev nucleation model with a reaction order of 1.264 +/- 0.010. The rate constant followed an Arrhenius-type temperature dependency with an apparent activation energy of 487.0 +/- 3.6 kJ.mol(-1) and pre-exponential factor 2.768 +/- 0.783-10(14) s(-1). A power-law dependence on O-2 partial pressure of order 8.317 +/- 0.233 was determined. Non-isothermal thermogravimetry to examine the oxidation of Fe3O4 to Fe2O3 revealed multiple kinetic regimes, and isothermal thermogravimetry showed the reaction proceeded rapidly, within 20 s, at temperatures greater than 673 K. Solid characterization was carried out using scanning electron microscopy and x-ray powder diffractometry up to temperatures of 1073 K to verify initial and final sample compositions and structures.
机译:通过空气布雷顿循环产生的太阳能被认为具有集成的热化学能量存储。通过基于Fe 2 O 3 / Fe 3 O 4还原-氧化反应的两步太阳能热化学循环来实现存储,包括(1)通过在真空下通过集中太阳辐射将Fe 2 O 3热还原为Fe 3 O 4和O-2。 (2)用压缩空气流将Fe3O4放热氧化回Fe2O3。这些步骤可以分离,从而产生高温加压气流,该气流在涡轮机上膨胀以产生按需电力。该系统的热力学分析确定了在4000太阳的太阳集中度,30 bar的氧化压力以及离开再氧化剂的空气与固体Fe2O3的摩尔比约为5:1时,最大循环效率为46.0%。 。 Fe2O3热还原的化学动力学在大约1400和1700 K之间使用非等温热重法测定,加热速率在10和20 K.s(-1)之间,O-2分压在0和0.05 bar之间。确定限速反应机理为成核,并使用Avrami-Erofe'ev成核模型解析动力学参数,反应阶数为1.264 +/- 0.010。速率常数遵循Arrhenius型温度依赖性,具有487.0 +/- 3.6 kJ.mol(-1)的表观活化能和2.768 +/- 0.783-10(14)s(-1)的指数前因子。确定幂律对O-2分压的依赖性为8.317 +/- 0.233。非等温热重法研究了Fe3O4氧化成Fe2O3的过程,揭示了多种动力学机制,等温热重法显示了在20 s内,在大于673 K的温度下反应迅速进行。使用扫描电子显微镜和X射线对固体进行表征粉末衍射仪可在高达1073 K的温度下验证初始和最终样品的成分和结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号