首页> 外文期刊>Software Testing, Verification and Reliability >Automated metamorphic testing of variability analysis tools
【24h】

Automated metamorphic testing of variability analysis tools

机译:变异性分析工具的自动化变质测试

获取原文
获取原文并翻译 | 示例

摘要

Variability determines the capability of software applications to be configured and customized. A common need during the development of variability-intensive systems is the automated analysis of their underlying variability models, for example, detecting contradictory configuration options. The analysis operations that are performed on variability models are often very complex, which hinders the testing of the corresponding analysis tools and makes difficult, often infeasible, to determine the correctness of their outputs, that is, the well-known oracle problem in software testing. In this article, we present a generic approach for the automated detection of faults in variability analysis tools overcoming the oracle problem. Our work enables the generation of random variability models together with the exact set of valid configurations represented by these models. These test data are generated from scratch using stepwise transformations and assuring that certain constraints (a.k.a. metamorphic relations) hold at each step. To show the feasibility and generalizability of our approach, it has been used to automatically test several analysis tools in three variability domains: feature models, common upgradeability description format documents and Boolean formulas. Among other results, we detected 19 real bugs in 7 out of the 15 tools under test. Copyright (c) 2015 John Wiley & Sons, Ltd.
机译:可变性决定了要配置和定制的软件应用程序的能力。在可变性密集型系统的开发过程中,通常需要对其底层可变性模型进行自动分析,例如,检测矛盾的配置选项。在变异性模型上执行的分析操作通常非常复杂,这阻碍了对相应分析工具的测试,并且使得确定其输出的正确性(即软件测试中众所周知的oracle问题)变得困难(通常不可行) 。在本文中,我们提出了一种通用方法,用于在可变性分析工具中自动检测故障以克服Oracle问题。我们的工作能够生成随机变异性模型以及这些模型所代表的有效配置的确切集合。这些测试数据是使用逐步转换从头开始生成的,并确保在每个步骤中都存在某些约束(也称为变质关系)。为了展示我们方法的可行性和通用性,已使用它在三个可变性域中自动测试了几种分析工具:功能模型,通用的可升级性描述格式文档和布尔公式。在其他结果中,我们在被测试的15种工具中的7种中检测出19个真正的错误。版权所有(c)2015 John Wiley&Sons,Ltd.

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号