首页> 外文期刊>Software Testing, Verification and Reliability >Seeding strategies in search-based unit test generation
【24h】

Seeding strategies in search-based unit test generation

机译:基于搜索的单元测试生成中的播种策略

获取原文
获取原文并翻译 | 示例

摘要

Search-based techniques have been applied successfully to the task of generating unit tests for object-oriented software. However, as for any meta-heuristic search, the efficiency heavily depends on many factors; seeding, which refers to the use of previous related knowledge to help solve the testing problem at hand, is one such factor that may strongly influence this efficiency. This paper investigates different seeding strategies for unit test generation, in particular seeding of numerical and string constants derived statically and dynamically, seeding of type information and seeding of previously generated tests. To understand the effects of these seeding strategies, the results of a large empirical analysis carried out on a large collection of open-source projects from the SF110 corpus and the Apache Commons repository are reported. These experiments show with strong statistical confidence that, even for a testing tool already able to achieve high coverage, the use of appropriate seeding strategies can further improve performance. © 2016 The Authors. Software Testing, Verification and Reliability Published by John Wiley & Sons Ltd.
机译:基于搜索的技术已成功应用于生成面向对象软件的单元测试的任务。但是,对于任何元启发式搜索,效率在很大程度上取决于许多因素。播种是指使用以前的相关知识来帮助解决当前的测试问题,是可能会严重影响此效率的一种因素。本文研究了用于单元测试生成的不同种子策略,尤其是静态和动态导出的数字和字符串常量的种子,类型信息的种子和先前生成的测试的种子。为了了解这些播种策略的效果,报告了对来自SF110语料库和Apache Commons信息库的大量开源项目进行的大量经验分析的结果。这些实验具有强大的统计信心,即使对于已经能够实现高覆盖率的测试工具,使用适当的播种策略也可以进一步提高性能。 ©2016作者。 John Wiley&Sons Ltd.发布的软件测试,验证和可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号