首页> 外文期刊>Software Testing, Verification and Reliability >Anomaly detection in performance regression testing by transaction profile estimation
【24h】

Anomaly detection in performance regression testing by transaction profile estimation

机译:通过事务概要估计来进行性能回归测试中的异常检测

获取原文
获取原文并翻译 | 示例

摘要

As part of the process to test a new release of an application, the performance testing team need to confirm that the existing functionalities do not perform worse than those in the previous release, a problem known as performance regression anomaly. Most existing approaches to analyse performance regression testing data vary according to the applied workload, which usually leads to the need for an extra performance testing run. To ease such lengthy tasks, we propose a new workload-independent, automated technique to detect anomalies in performance regression testing data using the concept known as transaction profile (TP). The TP is inferred from the performance regression testing data along with the queueing network model of the testing system. Based on a case study conducted against two web applications, one open source and one industrial, we have been able to automatically generate the ‘TP run report’ and verify that it can be used to uncover performance regression anomalies caused by software updates. In particular, the report helped us to isolate the real anomaly issues from those caused by workload changes with an average F1 measure of 85% for the open source application and 90% for the industrial application. Such results support our proposal to use the TP as a more efficient technique in identifying performance regression anomalies than the state of the art industry and research techniques. Copyright © 2015 John Wiley & Sons, Ltd.
机译:作为测试应用程序新版本的过程的一部分,性能测试团队需要确认现有功能的性能不会比以前的版本差,这是性能退化异常。大多数现有的分析性能回归测试数据的方法会根据所应用的工作负载而变化,这通常导致需要进行额外的性能测试。为了减轻此类繁琐的任务,我们提出了一种新的与工作量无关的自动化技术,该技术使用称为事务配置文件(TP)的概念来检测性能回归测试数据中的异常。 TP是从性能回归测试数据以及测试系统的排队网络模型中得出的。根据针对两个Web应用程序(一个开源和一个工业应用)进行的案例研究,我们已经能够自动生成“ TP运行报告”,并验证该报告可用于发现由软件更新引起的性能下降异常。特别是,该报告帮助我们将真正的异常问题与工作负载变化所导致的异常问题隔离开来,开源应用程序的F1平均值为85%,工业应用程序的F1平均值为90%。这样的结果支持了我们的建议,即使用TP作为一种比现有技术和研究技术更有效的技术来识别性能回归异常。版权所有©2015 John Wiley&Sons,Ltd.

著录项

  • 来源
  • 作者单位

    University College Dublin Lero Performance Engineering Lab School of Computer Science and Informatics Dublin Ireland;

    University College Dublin Lero Performance Engineering Lab School of Computer Science and Informatics Dublin Ireland;

    University College Dublin Lero Performance Engineering Lab School of Computer Science and Informatics Dublin Ireland;

    York University Department of Electrical Engineering and Computer Science Toronto ON Canada;

    IBM Dublin Systems and Performance Engineering Dublin Ireland;

    University College Dublin Lero Performance Engineering Lab School of Computer Science and Informatics Dublin Ireland;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    software update; performance models; performance regression testing;

    机译:软件更新;性能模型;性能回归测试;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号