首页> 外文期刊>IEEE Transactions on Software Engineering >Automatic Feature Learning for Predicting Vulnerable Software Components
【24h】

Automatic Feature Learning for Predicting Vulnerable Software Components

机译:用于预测易受攻击软件组件的自动特征学习

获取原文
获取原文并翻译 | 示例

摘要

Code flaws or vulnerabilities are prevalent in software systems and can potentially cause a variety of problems including deadlock, hacking, information loss and system failure. A variety of approaches have been developed to try and detect the most likely locations of such code vulnerabilities in large code bases. Most of them rely on manually designing code features (e.g., complexity metrics or frequencies of code tokens) that represent the characteristics of the potentially problematic code to locate. However, all suffer from challenges in sufficiently capturing both semantic and syntactic representation of source code, an important capability for building accurate prediction models. In this paper, we describe a new approach, built upon the powerful deep learning Long Short Term Memory model, to automatically learn both semantic and syntactic features of code. Our evaluation on 18 Android applications and the Firefox application demonstrates that the prediction power obtained from our learned features is better than what is achieved by state of the art vulnerability prediction models, for both within-project prediction and cross-project prediction.
机译:代码缺陷或漏洞在软件系统中普遍存在,可能导致各种问题包括僵局,黑客攻击,信息丢失和系统故障。已经开发出各种方法来试图在大型代码基础中检测此类代码漏洞的最可能位置。其中大多数依赖于手动设计代码特征(例如,代码令牌的复杂度指标或频率),其代表要定位的潜在问题代码的特征。然而,所有人都遭受充分捕获源代码的语义和句法表示的挑战,这是构建精确预测模型的重要能力。在本文中,我们描述了一种新的方法,建立在强大的深度学习长期内记忆模型,自动学习代码的语义和语法特征。我们对18个Android应用程序和Firefox应用程序的评估表明,从我们所学到的功能获得的预测能力优于由艺术漏洞预测模型的状态实现的更好,用于项目内预测和交叉项目预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号