首页> 外文期刊>Simulation >Machine learning-based discrete event dynamic surrogate model of communication systems for simulating the command, control, and communication system of systems
【24h】

Machine learning-based discrete event dynamic surrogate model of communication systems for simulating the command, control, and communication system of systems

机译:基于机器学习的离散事件动态代理模型,用于模拟系统的命令,控制和通信系统

获取原文
获取原文并翻译 | 示例

摘要

Command and control (C2) and communication are at the heart of successful military operations in network-centric warfare. Interoperable simulation of a C2 system model and a communication (C) system model may be employed to interactively analyze their detailed behaviors. However, such simulation would be inefficient in simulation time for analysis of combat effectiveness of the C2 model against possible input combinations while considering the communication effect in combat operations. This study proposes a discrete event dynamic surrogate model (DEDSM) for the C model, which would be integrated with the C2 model and simulated. The proposed integrated simulation reduces execution time markedly in analysis of combat effectiveness without sacrificing the accuracy reflecting the communication effect. We hypothesize the DEDSM as a probabilistic priority queuing model whose semantics is expressed in a discrete event systems specification model with some characteristic functions unknown. The unknown functions are identified by machine learning with a data set generated by interoperable simulation of the C2 and C models. The case study with the command, control, and communication system of systems first validates the proposed approach through an equivalence test between the interoperable simulation and the proposed one. It then compares the simulation execution times and the number of events exchanged between the two simulations.
机译:指挥和控制(C2)和沟通是以网络为中心的战争成功的军事行动的核心。可以采用C2系统模型的可互操作模拟和通信(C)系统模型来交互地分析其详细行为。然而,在考虑战斗操作中的通信效果的同时,这种模拟在可能的输入组合分析C2模型的战斗效率的仿真时间效率低下。本研究提出了用于C型号的离散事件动态代理模型(DEDSM),该模型将与C2模型集成并模拟。所提出的综合模拟显着降低了对战斗效能分析的测量时间,而不会牺牲反映通信效果的准确性。我们假设DEDSM作为概率优先级排队模型,其语义在一个离散事件系统规范模型中表达,具有一些特征函数未知。通过机器学习通过通过C2和C模型的可互操作模拟生成的数据集来识别未知功能。通过系统的命令,控制和通信系统的案例研究首先通过可互操作模拟和所提出的互操作模拟之间的等效测试来验证所提出的方法。然后,它比较了两者之间交换的模拟执行时间和事件的数量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号