首页> 外文期刊>Simulation >A framework for high-level simulation and optimization of fine-grained reconfigurable architectures
【24h】

A framework for high-level simulation and optimization of fine-grained reconfigurable architectures

机译:细粒度可重构体系结构的高级仿真和优化的框架

获取原文
获取原文并翻译 | 示例

摘要

Field Programmable Gate Arrays (FPGAs), due to their programmability, have become a popular design choice for control and processing blocks of modern-day digital design. However, this flexibility makes them larger, slower, and less power-efficient when compared to Application Specific Integrated Circuits (ASICs). On the other hand, ASICs have their own drawbacks, such as lack of programmability and inflexibility. One potential solution is specialized fine-grained reconfigurable architectures that have improved flexibility over ASICs and better resource utilization than FPGAs. However, designing a fine-grained reconfigurable architecture is a daunting task in itself due to lack of high-level design-flow support. This article proposes an automated design-flow for the system-level simulation, optimization, and resource estimation of generic as well as custom fine-grained reconfigurable architectures. The proposed framework is generic in nature as it can be used for both control-oriented and compute-intensive applications and then generates a homogeneous or heterogeneous reconfigurable architecture for them. Four sets of homogeneous and heterogeneous benchmarks are used in this work to show the efficacy of our proposed design-flow, and simulation results reveal that our framework can generate both generic and custom fine-grained reconfigurable architectures. Moreover, the area and power estimations show that auto-generated domain-specific reconfigurable architectures are 76% and 73% more area and power-efficient, respectively, than generic FPGA-based implementations. These results are consistent with the savings reported for manual designs in the literature.
机译:现场可编程门阵列(FPGA)由于具有可编程性,已成为现代数字设计的控制和处理模块的流行设计选择。但是,与专用集成电路(ASIC)相比,这种灵活性使它们更大,更慢且功耗更低。另一方面,ASIC具有其自身的缺点,例如缺乏可编程性和灵活性。一种潜在的解决方案是专用的细粒度可重新配置架构,该架构具有比ASIC更高的灵活性,并且比FPGA具有更好的资源利用率。但是,由于缺乏高级设计流程支持,因此设计细粒度的可重新配置体系结构本身就是一项艰巨的任务。本文为通用以及自定义的细粒度可重新配置体系结构的系统级仿真,优化和资源估计提出了一个自动设计流程。提议的框架本质上是通用的,因为它既可以用于面向控制的应用程序又可以用于计算密集型应用程序,然后为它们生成同构或异构的可重配置体系结构。这项工作中使用了四组同类基准和异构基准,以展示我们提出的设计流程的功效,而仿真结果表明,我们的框架可以生成通用和定制的细粒度可重构体系结构。此外,面积和功耗估算显示,与基于FPGA的通用实现相比,自动生成的特定于域的可重构架构分别使面积和功耗效率分别提高了76%和73%。这些结果与文献中报道的手动设计节省的结果一致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号