首页> 外文期刊>Simulation >Comparison of state estimation techniques for nonlinear hybrid systems
【24h】

Comparison of state estimation techniques for nonlinear hybrid systems

机译:非线性混合系统状态估计技术的比较

获取原文
获取原文并翻译 | 示例

摘要

Modern real-world engineering systems exhibit complex hybrid behaviors, which are composed of continuous nonlinear plant dynamics interspersed with discrete mode switching. State estimation of hybrid systems for accurate and timely online monitoring and diagnosis applications is a difficult task. A number of different methods have been proposed, and we develop a conceptual framework to perform a comparative study of four different hybrid state estimation algorithms in this paper: (1) the switched extended Kalman filter; (2) focused hybrid estimation; (3) multiple-modal particle filtering; and (4) the one-step look-ahead particle filtering. The conceptual comparison is followed by an empirical evaluation, where we study the effectiveness of these algorithms in tracking the behaviors of a Reverse Osmosis Subsystem of an Advanced Water Recovery System that was developed at the NASA Johnson Space Center. We discuss our results, which show the strengths and weaknesses of each of these algorithms, and propose topics for further research into this important problem.
机译:现代现实世界的工程系统表现出复杂的混合行为,这些行为由连续的非线性工厂动态和离散模式切换组成。用于准确,及时地在线监视和诊断应用的混合系统的状态估计是一项艰巨的任务。已经提出了许多不同的方法,并且我们开发了一个概念框架来对四种不同的混合状态估计算法进行比较研究:(1)交换扩展卡尔曼滤波器; (2)集中混合估计; (3)多模态粒子滤波; (4)单步前瞻粒子滤波。在概念比较之后进行实证评估,我们在其中研究了这些算法在跟踪美国国家航空航天局约翰逊航天中心开发的高级水回收系统的反渗透子系统的行为方面的有效性。我们讨论了我们的结果,这些结果显示了每种算法的优缺点,并提出了进一步研究此重要问题的主题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号